

UNIVERSITATEA TEHNICĂ "GH. ASACHI" DIN IAȘI FACULTATEA DE INGINERIE CHIMICĂ ȘI PROTECȚIA MEDIULUI

REZUMATUL TEZEI DE DOCTORAT

PARTICULE CU PROPRIETĂȚI MAGNETICE

Conducător științific Acad. BOGDAN C. SIMIONESCU

> Doctorand, ANAMARIA DURDUREANU (ANGHELUŢĂ)

IAŞI, 2011

Aceasta teza de doctorat cuprinde cele mai importante rezultate obtinute in cadrul studiilor doctorale efectuate sub indrumarea Acad. Bogdan C. Simionescu.

Adresez multumiri si recunostinta domnului **Acad. Bogdan** C. Simionescu pentru increderea acordata, pentru sprijinul moral si stiintific, pentru ca mi-a oferit posibilitatea sa lucrez intr-un colectiv cu oameni de calitate care mi-au fost alaturi.

Doamnei **Dr. Mariana Pinteala** sincere multumiri si recunostinta pentru indrumarea stiintifica pe parcursul anilor de doctorat, pentru rabdarea si bunavointa de care a dat dovada la formarea mea ca cercetator si ca om.

Multumiri pentru colaborarea fructuoasa pe parcursul studiilor doctorale si pentru optimismul doamnei *Dr. Lucia Pricop*.

Recunostinta si simpatie pentru Zoamna **Dr. Valeria Karabagiu** care mi-a insuflat Zorinta Ze a fi cat mai exigenta si curajoasa.

Deosebite multumiri pentru pretioasele indrumari domnului *Dr. Rodinel Ardeleanu* si doamnei *Dr. Viorica Kamciuc*. Multumesc **colegilor** de laborator care au fost alaturi de mine atat profesional cat si personal, precum si colegilor de la departamentul de caracterizare fara de care nu se puteau valorifica rezultatele experimentale obtinute.

Sprijinul **solului meu** si inocenta copilului meu mi-au dat putere si rabdare sa duc la bun sfarsit acest capitol al vietii. Multumesc de asemenea **parintilor** si **prietenilor** pentru sustinerea morala care mi-au oferit-o.

Dedic aceasta lucrare copilului meu, **Andrei**!

CUPRINS

teza/rezumat Introducere 1 Abrevieri 4 Partea I. Date de literatura 5 Capitolul I. Micro- si nanoparticule de magnetita monodisperse 6 I.1. Aspecte generale 6 I.2. Metode de sinteza ale particulelor de magnetita 20 I.2.1. Sinteza particulelor de magnetita prin co-precipitare 20 I.2.2. Sinteza particulelor de magnetita prin mojarare 21 I.2.3. Sinteza particulelor de magnetita prin reactia sol-gel 22 I.2.4. Sinteza particulelor de magnetita prin metoda microemulsiilor 22 I.2.5. Alte metode de sinteza 23 I.3. Influenta concentratiei speciei ionice Fe(II) in formarea particulelor de 26 magnetita Capitolul II. Particule de magnetita miez-coaja 28 II.1. Sinteza de particule de magnetita miez-coaja 31 II.2. Aplicatii ale micro- si nanoparticulelor de magnetita miez-coaja 39 II.2.1. Aplicatii biomedicale 39 II.2.2. Aplicatii in cataliza 43 II.2.3. Aplicatii industriale 43 46/5 Partea a II-a. Rezultate proprii Capitolul III. Particule magnetice obtinute prin legaturi covalente intre miez si 49/7 coaia III.1. Particule de magnetita cu invelis hidrofob de tip monomer silanic sau 51/8 polidimetilsiloxanic III.1.1. Particule magnetice cu invelis hidrofob monomer silanic 51/8 III.1.1.1. Sinteza particulelor magnetice cu invelis hidrofob trietoxialil- sau 51/8 trietoximetil-silan (ATES, MTES) III.1.1.2. Caracterizarea particulelor magnetice neacoperite 54 III.1.1.3. Caracterizarea particulelor magnetice miez-coaja (miez: magnetita, 56/8 coaja: monomer silanic) III.1.1.4. Concluzii 62 III.1.2. Particule magnetice cu invelis hidrofob polimeric de tip polidimetilsiloxan 63/11 III.1.2.1. Sinteza particulelor magnetice acoperite cu PDMS-TES 64/11 III.1.2.2. Caracterizarea intermediarilor si a particulelor magnetice acoperite 72 cu PDMS-TES III.1.2.3. Sinteza si caracterizarea particulelor magnetice acoperite cu 90/17 PDMSg-E III.1.2.3.1. Sinteza copolimerului PDMSg-E 90/17 III.1.2.3.2. Sinteza particulelor magnetice miez-coaja Ma-PDMSg-E 93/18

III.1.2.3.3. Caracterizarea structurala a intermediarilor si a particulelor Ma-94/18 PDMSg-E III.1.2.4. Concluzii 102 III.2. Particule magnetice hidrofile cu legaturi covalente intre miez si coaja 104/21 III.2.1. Sinteza si caracterizarea particulelor magnetice miez-coaja, miez: 104 magnetita, coaja: 3-aminopropilsiloxi (Ma-APTES) III.2.2. Sinteza si caracterizarea particulelor magnetice miez-coaja, miez: 114/26 magnetita, coaja: 3-glicidoxipropiltrimetoxi (Ma-GOPS) III.2.3. Concluzii 122 Capitolul IV. Particule magnetice miez-coaja hidrofobe cu legaturi de hidrogen 123/29 intre miez si coaja IV.1. Sinteza copolimerului PDMSgPEO-COOH 124/30 IV.2. Sinteza de particule magnetice miez-coaja Ma-PDMSgPEO-COOH cu 127/31 legaturi de hidrogen intre miez si coaja IV.3. Caracterizarea copolimerului si a particulelor miez-coaja 128/32 IV.3.1. Caracterizarea structurala si comportamentul in solutie a copolimerului 128 amfifil PDMSgPEO-COOH IV.3.2. Caracterizarea particulelor magnetice miez-coaja Ma-PDMSgPEO-COOH 142/33 IV.4. Concluzii

Capitolul V. Particule magnetice miez-coaja obtinute prin metode combinate	
V.1. Sinteza particulelor de magnetita cu invelis hidrofob prin mojarare (Mmoj)	152/37
V.2. Sinteza particulelor de magnetita cu invelis hidrofil (Mmoj-APTES)	154/37
V.3. Caracterizarea produsilor	155/38
V.4. Concluzii	175

150

177/44

Capitolul	VI.	Concluzii	generale
-----------	-----	-----------	----------

Capitolul VII. Partea experimentala	178
VII.1. Materiale	178
VII.1.1. Reactivi	178
VII.1.2. Solventi	182
VII.2. Sinteza produsilor	183
VII.3. Aparatura utilizata pentru caracterizarea compusilor sintetizati	191
ANEXA-Lista publicatii	197/46
Bibliografie	202/51

INTRODUCERE

Micro- si nanoparticulele magnetice sunt compusi pe baza de Fe, Ni sau Co. Cele mai utilizate dintre aceste tipuri de particule sunt particulele de magnetita (particule de oxid feroferic, FeO·Fe₂O₃) deoarece sunt mai putin sensibile la procesul de oxidare si la pierderea proprietatilor magnetice. Particulele pe baza de magnetita sunt intens studiate in ultimele decenii deoarece au aplicatii importante atat industriale si catalitice, cat si in biomedicina, in domeniul oncologiei. Compusii cu care s-a realizat acoperirea/stabilizarea particulelor de magnetita sunt compusi cu siliciu, atat monomeri silanici cat si (co)polimeri siloxanici care prezinta diferite functiuni. In urma procesului de acoperire a particulelor se obtin particule de tip miez-coaja (*core-shell*).

Teza de doctorat intitulata *Particule cu proprietati magnetice* a avut drept obiectiv principal prepararea prin metode economice, usor de realizat si caracterizarea de particule magnetice de tip miez-coaja (magnetita-compusi cu siliciu), propuse ca potentiale vehicule magnetice in industrie sau biotehnologie/biomedicina. In acest sens, pentru unele sinteze s-au utilizat anumiti monomeri silanici cu diferite functiuni iar in alte sinteze s-a impus alaturi de prepararea particulelor magnetice invelite sinteza si caracterizarea surfactantilor utilizati/(co)polimeri siloxanici cu diverse grupari functionale, capabile sa interactioneze cu gruparile active de pe suprafata particulelor de magnetita. Particulele magnetice invelite cu monomeri sau (co)polimeri pot fi inglobate in fluide transportoare, ferofluide, iar in functie de hidrofobia/hidrofilia gruparilor atasate particulelor, fluidele pot fi, de asemenea, hidrofobe sau hidrofile.

Teza este alcatuita din doua parti, prima parte – date de literatura si partea a doua – rezultate proprii si este structurata in sapte capitole. Primele doua capitole sunt incluse in partea de literatura a tezei, iar restul capitolelor reprezinta partea de rezultate proprii.

In capitolul I si in capitolul II este prezentat un studiu amplu de literatura privind stadiul actual al cercetarilor in domeniul particulelor pe baza de magnetita, si anume se discuta unele notiuni introductive de magnetism, sinteza de particule de magnetita si de particule de tip *miez-coaja* pe baza de magnetita, factorii care influenteaza structura si proprietatile particulelor de magnetita, aplicatiile acestor tipuri de particule de magnetita miez-coaja precum si cateva exemple de particule magnetice miez-coaja obtinute de diversi cercetatori.

Partea de **rezultate experimentale** este structurata in trei capitole si relateaza sintezele realizate in urma programului de studii doctorale precum si caracterizarea sistemelor obtinute din punct de vedere structural, morfologic, dimensional. S-a avut in vedere, de asemenea, si caracterizarea din punct de vedere al proprietatilor magnetice prin determinarea magnetizatiei masice de saturatie a particulelor.

Capitolul III trateaza obtinerea de particule magnetice de tip *miez-coaja* prin interactiuni covalente intre miez si invelis, care contin un miez de magnetita si invelis hidrofil sau hidrofob indus de structura chimica a monomerilor/polimerilor utilizati. Pentru realizarea acestor sinteze se pleaca de la reactia de co-precipitare a doua saruri de fier (clorura ferica $FeCl_3xH_2O$ si clorura feroasa $FeCl_2xH_2O$) in solutie amoniacala, obtinandu-se particule de magnetita.

Pentru obtinerea de particule hidrofobe, particulele de magnetita au fost invelite cu diferiti surfactanti, monomeri cu functiuni etoxi sau metoxi, precum si cu polidimetilsiloxan cu grupari functionale etoxi printr-o reactie de condensare intre gruparile hidroxilice (de pe suprafata magnetitei) si gruparile functioanale specifice din monomerii silanici sau polimerii siloxanici. Structura chimica, morfologia si proprietatile particulelor sintetizate au fost studiate in comparatie cu particulele de magnetita preformata. Monomerii utilizati in obtinerea particulelor cu invelis hidrofob au fost: aliltrietoxisilanul (ATES) si metiltrietoxisilanul (MTES).

Particulele de magnetita au fost de asemenea functionalizate prin legaturi covalente cu polimerul siloxanic functionalizat cu gruparea trietoxi pe capat (α -trietoxisilil-polidimetilsiloxan) (PDMS-TES) si respectiv cu polimerul siloxanic grefat cu grupari esterice pe lant (PDMSg-E). Pentru fiecare dintre acesti doi polidimetilsiloxani este relatata sinteza si caracterizarea structurala. In cazul particulelor functionalizate cu PDMS-TES au fost obtinute noi ferofluide siliconice magnetice prin dispersarea particulelor de magnetita acoperite cu siloxan in polidimetilsiloxan cu masa moleculara mica sau mare. Polisiloxanul cu grupari esterice pendante PDMSg-E este utilizat ca surfactant in procesul de acoperire a particulelor de magnetite si gruparile functionale de pe suprafata magnetitei si gruparile functionale esterice ale posiloxanului. Sinteza acestor particule magnetice de tip *miez-coaja* are loc intr-o singura etapa.

Particulele miez-coaja cu invelis hidrofil au fost obtinute prin interactiunea covalenta dintre gruparile hidroxilice functionale ale particulelor de magnetita si gruparile functionale etoxi/metoxi ale monomerilor 3-aminopropiltrietoxisilan si 3-glicidoxipropiltrimetoxisilan (GOPS). Acoperirea suprafetei particulelor de magnetita se realizeaza in a doua etapa, cand are loc formarea legaturii Si-O-Fe prin legarea covalenta a gruparilor functionale de pe suprafata particulelor de magnetita si gruparile functionale etoxi/metoxi ale monomerul silanic (APTES/GOPS).

Capitolul IV vizeaza obtinerea de particule magnetice *miez-coaja* cu invelis hidrofob obtinute prin legaturi de hidrogen. Astfel, *se* prezinta sinteza si caracterizarea copolimerului amfifil grefat siloxan/α-carboxiester-poli(etilen oxid) (PDMSgPEO-COOH), micelizarea atat in solutie apoasa cat si in solutie de toluen precum si formarea microparticulelor de magnetita de tip miez-coaja stabilizate cu copolimerul prin interactiunea gruparilor functionale ale magnetitei si ale copolimerului (–COOH) prin legaturi de hidrogen. Obtinerea magnetitei precum si procesul de acoperire al particulelor au loc intr-o singura etapa.

In capitolul V este relatata sinteza de particule de magnetita printr-o metoda mai eficienta de sinteza a particulelor de magnetita, o reactie in stare solida realizata prin mojararea componentilor in atmosfera inerta in interiorul unei camere izolate. De asemenea, se demonstreaza influenta concentratiei speciei chimice Fe(II) asupra dimensiunii particulelor de magnetita, sinteza realizandu-se la trei valori ale raportului molar intre speciile chimice Fe(II)/Fe(III) (0.35, 0.25 si 0.15). S-a observat ca diametrul mediu al particulelor de magnetita scade cu scaderea raportului molar. Precursorii utilizati sunt sarurile de clorura ferica si ferosa, ambele utilizate in stare solida, hidroxidul de sodiu in stare solida, iar cu rol de surfactant un aduct format din acid oleic si oleilamina. Acesti componenti sunt mojarati impreuna, durata reactieii fiind de cateva minute, iar particulele obtinute au un caracter hidrofob. Pentru obtinerea de particule hidrofile se pleaca de la particulele hidrofobe care au dimensiunea cea mai mica (raportul speciilor chimice Fe(II)/Fe(III)=0,15), acoperite cu 3aminopropiltrietoxisilan prin interschimbarea invelisului de acid oleic-oleilamina. Datorita prezentei gruparii aminice, particulele rezultate sunt dispersate in apa. Reactia particulelor de magnetita cu monomerul 3-aminopropiltrietoxisilan (APTES) este o reactie de schimb de ligand, avand loc interschimbarea invelisului de acid oleic-oleilamina cu APTES.

Teza se incheie cu concluziile generale (capitolul VI) si partea experimentala (capitolul VII) in care sunt relatate metodele de sinteza utilizate pentru toti (co)polimerii cat si pentru particulele magnetice *miez-coaja*, reactivii utilizati, aparatura folosita in caracterizarea produsilor, precum si lista bibliografica consultata.

Particule cu proprietati magnetice

Abrevieri

Ac ₂ 0	anhidrida acetica			
AFM	microscopia de forta atomica			
A-PEO-TS	α-alil-ω-trimetilsilil-poli(etilen oxid)			
APTES	3-aminopropiltrietoxisilan			
ATES	Aliltrietoxisilan			
CDCl ₃	cloroform deuterat			
СМС	concentratie critica micelara			
DLS	difuzia dinamica a luminii			
D_4	Octametilciclotetrasiloxan			
EDX	energie de dispersie de raze X			
FT-IR	spectroscopie in infrarosu cu transformata Fourier			
G	Gauss			
GOPS	3-glicidoxipropiltrimetoxisilan			
GPC	cromatografie pe gel permeabil			
Нсі	camp coercitiv			
HMDS	Hexametildisiloxan			
<i>H_lPDMS/H-PDMS</i>	polidimetilsiloxan cu grupari de hidrogen pendante			
L-31	oligomer H-metilsiloxan			
Ma	magnetita obtinuta prin co-precipitare			
Mmoj	magnetita obtinuta prin mojarare			
Mr	magnetizatie remanenta			
Ms	magnetizatie masica de saturatie			
MTES	Metiltrietoxisilan			
PDMS	Polidimetilsiloxan			
PEO	poli(etilen oxid)			
SEM/ESEM	microscopie electronica de baleiaj			
VSM	magnetometru cu proba vibranta			
XPS	spectroscopie fotoelectronică in domeniul razelor X			
PDMS-TES	α -trietoxisilil-polidimetilsiloxan			
PDMSgPEO-COOH	copolimer grefat polidimetilsiloxan- g- a-carboxiester-poli(etillen			
	oxid)			
PDMSg-E	copolimer polidimetilsiloxan grefat cu radicali organici cu grupari esterice finale			

Partea a II-a. Rezultate proprii

Teza de doctorat intitulata "**Particule cu proprietati magnetice**" prezinta metodele de obtinere ale particulelor magnetice sferice de tip *core-shell (miez-coaja)*, *core-* magnetita, *shell* - monomer sau (co)polimer cu rol de *surfactant*, capabile sa stabilizeze particulele magnetice intr-un solvent specific aplicatiei (ex.: sa imprime hidrofilie sau hidrofobicitate suprafetei). Surfactantul trebuie sa aiba in structura chimica grupari functionale ce sunt capabile sa interactioneze cu gruparile hidroxilice de pe suprafata particulelor de magnetita preformate (prin legaturi de hidrogen sau covalente) si sa fie stabile in mediile impuse de domeniul de aplicabilitate.

In capitolele ce prezinta rezultatele proprii sunt descrise metodele de sinteza prin care s-au obtinut particulele de magnetita, mecanismele prin care s-a realizat invelirea acestora cu diferiti compusi, sinteza surfactantilor macromoleculari si caracterizarea fizico-chimica a intermediarilor de reactie si a particulelor finale.

Surfactantii utilizati pentru stabilizarea particulelor de magnetita sunt monomeri silanici sau (co)polimeri cu secvente polidimetilsiloxanice, ce poseda in structura chimica grupari functionale adecvate aplicatiei finale.

Particulele de magnetita s-au obtinut prin:

- co-precipitarea sarurilor bivalente si trivalente de fier (in diferite rapoarte molare Fe(II)/Fe(III)) in medii alcaline, atat in absenta cat si in prezenta surfactantului;
- mojararea sarurilor bivalente si trivalente de fier (in diferite rapoarte molare Fe(II)/Fe(III) in prezenta unui surfactant nespecific, urmata de o reactie de interschimbare a invelisului hidrofob cu un surfactant fidrofil.

Prezentarea schematica a structurii rezultatelor experimentale

Capitolul III. Particule magnetice obtinute prin legaturi covalente intre miez si coaja

In functie de metoda de sinteza se pot impune anumite proprietati particulelor magnetice pe baza de magnetita: dimensiune, polidispersitate dimensionala, forma si valorile magnetizatiei. Metoda utilizata trebuie sa fie reproductibila, economica, sa nu implice etape dificile de purificare a produsului si sa permita aplicarea la scara larga. Cele mai utilizate metode de obtinere a particulelor de magnetita sunt: co-precipitarea, metoda sol-gel, reactiile de descompunere sonochimica, reactii pe baza de polioli, mojararea etc.

Modalitatile de sinteza abordate in teza sunt co-precipitarea si mojararea (reactia in masa). Sinteza particulelor de magnetita prin co-precipitarea clorurilor ferica si feroasa este considerata cea mai economica metoda de obtinere a oxizilor de fier (magnetita si maghemita), si se realizeaza in solutie apoasa amoniacala¹ in prezenta sau absenta unui solvent organic, sau in masa (in prezenta de NaOH solid si in absenta oricarui solvent). Reactia de co-precipitare se realizeaza in solutie apoasa amoniacala in absenta unui solvent organic, acoperirea particulelor de magnetita are loc intr-o etapa ulterioara, distincta, in timp ce, daca se realizeaza in prezenta unui solvent organic nemiscibil cu apa in care este solubilizat un *surfactant*, stabilizarea particulelor are loc *in-situ la interfata apa-solvent*.

Pentru a realiza legarea covalenta a monomerilor, homopolimerilor si bloc copolimerilor trebuie ca acestia sa contina in structura chimica functiuni organice capabile de interactii cu gruparile hidroxilice de pe suprafata particulelor de magnetita. Grefarea s-a realizat prin reactia de condensare a gruparilor hidroxilice de pe suprafata particulelor de magnetita cu grupari functionale ale monomerului sau polimerului utilizat. Cea mai frecventa grupare functionala, capabila sa interactioneze cu gruparile hidroxilice de pe suprafata particulelor de magnetita, este gruparea trietoxi- sau trimetoxi-silil-^{2,3}, caracterul final al suprafetei fiind dat de prezenta unor functiuni in structura monomerului sau (co)polimerului ce formeaza invelisul particulei.

III.1. Particule de magnetita cu invelis *hidrofob* de tip monomer silanic sau polidimetilsiloxanic

III.1.1. Particule magnetice cu invelis hidrofob monomer silanic

III.1.1.1. Sinteza particulelor magnetice cu invelis hidrofob trietoxialil- sau trietoximetilsilan (ATES, MTES)

Gruparile hidroxilice de pe suprafata particulelor de magnetita (Ma) au capacitatea de a interactiona cu gruparile functionale specifice prezente in structura chimica a *surfactantului*.

Particulele magnetice de tip *miez-coaja* au miezul de magnetita si invelisul hidrofob indus de prezenta gruparile alil si metil^{2,4,5,6} din monomerii silanici. Aceste grupari sunt legate covalent de particulele de magnetita prin intermediul unui spatiator siloxi (R₃SiO-). O atentie deosebita s-a acordat studiului influentei radicalului organic legat de Si asupra capacitatii de reactie a magnetitei cu trietoxisilanii utilizati si asupra polidispersitatii dimensionale a particulelor.

Reactia de condensare este similara pentru cei doi monomeri silanici si are loc la temperatura de reflux a solventului utilizat, conducandu-se la formarea legaturii Fe-O-Si.

Schema III.5. Reprezentarea schematica a modului de legare covalenta a trietoxisilanilor ATES si MTES pe suprafata particulelor de magnetita

III.1.1.3. Caracterizarea particulelor magnetice miez-coaja (miez: magnetita, coaja: monomer silanic)

Caracterizarea structurala prin spectroscopia FT-IR

Spectrele FT-IR ale particulelor de magnetita *miez-coaja* (Figura III.2) indica prezenta legaturii covalente dintre monomerul silanic si suprafata magnetitei prin aparitia benzilor din domeniul spectral 1100-1040 cm⁻¹, specifica vibratiilor gruparilor Si–O–Si².

Pentru ATES, spectrul FT-IR indica o scadere a numarului de grupari –OH caracteristice pentru Ma prin scaderea intensitatii benzii de la 3400 cm⁻¹ si aparitia benzilor de la 2975 cm⁻¹ si 2925 cm⁻¹ corespunzatoare vibratiilor de alungire ale gruparilor alilice. Benzile de la 1166 cm⁻¹ si de la 901 cm⁻¹ sunt atribuite vibratiilor gruparilor Si-C. Particulele de magnetita grefate cu MTES prezinta benzi caracteristice vibratiilor gruparilor Si–CH₃ la 1272 cm⁻¹ si la 927 cm⁻¹ si gruparilor Si–CH₂ la 2969 cm⁻¹.

Fig. III.2. Spectrele FT-IR pentru Ma; Ma-ATES; Ma-MTES

Analiza termogravimetrica

Analiza termogravimetrica (Figura III.3) permite observarea etapelor de descompunere care au loc in intervalul de temperatura $50-600^{\circ}$ C.

Fig. III.3. Curbele TG/DTG pentru Ma; Ma-ATES; Ma-MTES

> Analizele de distributie dimensionala prin difuzia dinamica a luminii (DLS)

Figura III.4 prezinta distributiile dimensionale ale particulelor de magnetita-monomer trietoxi- sau trimetoxisilan. Dupa modificarea suprafetei particulelor de magnetita, fractia de particule cu dimensiuni mici dispare complet formandu-se particule cu dimensiuni in jur de 496 nm in cazul acoperirii cu aliltrietoxisilan si de 532 nm in acoperirea cu metiltrietoxisilan, prezentand valori ale polidispersitatilor dimensionale mici (~0,2). Dupa acoperire se remarca o crestere globala a dimensiunilor particulelor, demonstrandu-se ca particulele de magnetita au fost acoperite cu monomerii silanici.

Proprietatile magnetice

S-au evidentiat valori ale magnetizatiei masice de 56 emu/g pentru Ma-ATES si respectiv de 55 emu/g pentru Ma-MTES. Acestea sunt foarte apropiate de valoarea de magnetizatie masice a particulelor de magnetita neacoperite (64 emu/g), ceea ce permite utilizarea acestora pentru aplicatii specifice. Scaderea valorilor de magnetizatie masice, in cazul particulelor de magnetita acoperite, este atribuita, in special, existentei radicalului organic ce diminueaza concentratia globala a magnetitei in acelasi volum de particule.

De asemenea, este de mentionat ca aceste particule nu prezinta un fenomen de histerezis caracteristic materialelor superparamagnetice⁷.

Fig. III.5. Curbele de magnetizatie masica pentru particulele de Ma, Ma-ATES si Ma-MTES

III.1.2. Particule magnetice cu invelis hidrofob polimeric de tip polidimetilsiloxan

Obtinerea de fluide magnetice stabile in polidimetilsiloxani nefunctionalizati poate fi realizata prin acoperirea particulelor magnetice cu polisiloxani functionalizati sau copolimeri hidrofobi, prezentand in structura chimica o regiune functionalizata (capabila sa reactioneze cu gruparile hidroxilice de pe suprafata particulelor de magnetita) si o secventa hidrofoba nereactiva (care este solvatata in mediul de dispersie sau in fluidul transportor). Fluidele magnetice pe baza de nanoparticule de magnetita stabilizate steric intr-un fluid siloxanic cu masa moleculara mica prezinta aplicatii biomedicale datorita combinarii stabilitatii oxidative a magnetitei cu biocompatibilitatea polidimetilsiloxanilor⁸.

Obiectivul acestui subcapitol este de a prezenta rezultatele obtinute in urma acoperirii particulelor de magnetita, prin legare covalenta, cu un polidimetilsiloxan α -functionalizat cu grupari trietoxisilil- (α -trietoxisilil-polidimetilsiloxan) (PDMS-TES) si un polidimetilsiloxan grefat cu alilglicidil-eter. Gruparile epoxidice au fost transformate in grupari esterice la capatul lantului grefat (PDMSg-E) prin reactia cu anhidrida acetica.

Sinteza particulelor magnetice de tip *miez-coaja* are loc intr-o singura etapa in care gruparile hidroxilice de pe suprafata magnetitei reactioneaza cu gruparile functionale atasate lantului de polidimetilsiloxan. Au fost obtinute dispersii coloidale stabile care contin particule de magnetita acoperite cu polidimetilsiloxani *PDMS-TES*⁹ sau *PDMSg-E*¹⁰, de dimensiuni mici, dovedindu-se faptul ca polimerii utilizati ca *surfactanti* sunt eficienti. Polisiloxanii cu grupari functionale pendante prezinta un interes deosebit ca materiale biomedicale¹¹, rasini de acoperire a suprafetelor¹², materiale fotoreactive¹³ sau cristale lichide¹⁴ in functie numarul, pozitia si de natura gruparilor functionale atasate lantului polimeric.

III.1.2.1. Sinteza particulelor magnetice acoperite cu PDMS-TES Sinteza α-trietoxisilil-polidimetilsiloxanului (PDMS-TES)

Schema generala de obtinere a polimerului α - trietoxisilil-polidimetilsiloxanului (PDMS-TES) care include toate etapele de sinteza este prezentata in Schema III.9.

Schema III.9. Sinteza α- trietoxisilil-polidimetilsiloxanului (PDMS-TES)

Obtinerea de ferofluid pe baza de polidimetilsiloxan si particule Ma-PDMS-TES

Obtinerea fluidelor magnetice pe baza de polidimetilsiloxani si particule magnetice acoperite cu polisiloxani sau copolimeri ai acestora a fost realizata prin doua metode (schema III.10.):

I. Particulele de magnetita acoperite (*miez-coaja*) sunt dispersate intr-un fluid (polidimetilsiloxan) (*Ma-PDMS-TES*₁).

II. Solutia coloidala a particulelor magnetice *miez-coaja* intr-un solvent organic, obtinuta intr-o singura etapa de reactie (co-precipitarea sarurilor de fier a avut loc in prezenta surfactantului, reactantii au fost dispersati intr-un amestec apa-solvent organic nemiscibil cu apa) a fost dispersata intr-un polidimetilsiloxan, urmata de indepartarea solventului prin distilare la vid (*Ma-PDMS-TES*₂).

Schema III.10. Obtinerea particulelor de magnetita cu PDMS-TES prin cele doua metode

Structura, dimensiunea si morfologia particulelor magnetice miez-coaja Ma-PDMS-TES

Principalii factori care asigura stabilitatea ferofluidelor sunt forma, dimensiunea particulelor si structura chimica a invelisului, responsabil pentru asigurarea compatibilitatii cu fluidul transportor. Din aceste considerente, in acest capitol sunt prezentate studiile asupra formei si dimensiunii particulelor de Ma-PDMS-TES₁ dispersate in PDMS_{10 000} si de Ma-PDMS-TES₂ dispersate in D₄ si in PDMS_{10 000}, prin tehnici de microscopie (microscopie de forta atomica (AFM), microscopie electronica de baleiaj (SEM)) si difuzia dinamica a lumini.

Danuminaa puokai	Suprafata	Numarul de particule - scanate	Caracteristicile particulelor		
Denumirea provei	scanata (μm²)		Diametrul mediu AFM (nm)	Inaltimea medie AFM (nm)	Raza medie reala (nm)
Ma	10X10	47	679±20	59±20	338±20
Ma-PDMS-TES1 in PDMS10 000	10X10	19	885±20	48±20	442±20
Ma-PDMS-TES ₂ in PDMS _{10 000}	2X2	20	214±20	22±20	104±20
Ma-PDMS-TES ₂ in D ₄	5X5	17	376±20	85±20	183±20

Tabel III.3. Valorile medii calculate pentru raza reala a particulelor de magnetita acoperite si neacoperite dispersate in $PDMS_{10\,000}$ si in D₄

Din analiza datelor prezentate in tabelul III.3. se poate observa ca particulele de magnetita neacoperite au un diametru mediu de 600-700 nm, Ma-PDMS-TES₁ 800 nm si mai mici pentru particulele acoperite *in situ* (Metoda II, capitolul III.1.2.1.), de 350 nm pentru Ma-PDMS-TES₂ in D₄ si 200 nm pentru Ma-PDMS-TES₂ in PDMS₁₀₀₀₀, indicand o mai buna dispersie si omogenitate ridicata a ferofluidului care contine particulele invelite prin metoda intr-o singura etapa (Ma-PDMS-TES₂) (capitolul III.1.2.1.).

Rezultatele obtinute prin microscopia de forta atomica privind dimensiunile si forma particulelor au fost sustinute si de rezultatele obtinute prin microscopia electronica de baleiaj.

In figura III.19. sunt reprezentate spectrele FT-IR ale particulelor de magnetita acoperite si neacoperite (Ma-PDMS-TES). Spectrul FT-IR al Ma (figura III.19a.) prezinta benzi de absorbtie caracteristice gruparilor Fe-O¹⁵ la 629, 590 si 440 cm⁻¹. Benzile de la 3396, 1617 si 1400 cm⁻¹ sunt caracteristice vibratiilor de alungire ale gruparilor –OH din apa adsorbita la suprafata particulelor si vibratiilor de deformare ale gruparilor OH¹⁶. Spectrul FT-IR ale particulelor acoperite prin ambele metode cu PDMS-TES prezinta o scadere in intensitate a benzii corespunzatoare gruparii –OH si prezenta unor benzi noi la 1094 si 1024 cm⁻¹, specifice vibratiilor gruparilor Si-O-Si din PDMS-TES. Dupa functionalizarea particulelor de magnetita cu PDMS-TES, benzile caracteristice vibratiilor gruparilor Fe-O sunt deplasate la 628, 588 si 448 cm⁻¹ datorita formarii legaturilor Si-O-Fe (in urma reactiei dintre gruparile –OH de pe suprafata particulelor de magnetita si gruparile etoxisililice din

polimer). De asemenea, se observa trei benzi de absorbtie la 1260, 2923 si 2853 cm⁻¹, care corespund vibratiilor gruparilor Si-CH₃ si vibratiei de alungire ale gruparilor C-H si C-H₂. Benzile largi de la 3400 si 1628 cm⁻¹ pot fi atribuite vibratiilor dealungire ale gruparilor N-H care se suprapun peste benzile corespunzatoare vibratiilor gruparilor hidroxilice nereactionate de pe suprafata particulelor de Ma¹⁵. Aceste observatii demonstreaza acoperirea cu polisiloxana particulelor magnetice.

Fig. III.19. Spectrele FT-IR pentru particulele de (a) Ma si de (b) Ma-PDMS-TES₁

Pentru studiul proprietatilor magnetice ale particulelor de magnetita acoperite s-au facut masuratori de magnetizatie masica pe un magnetometru cu proba vibranta (VSM) si s-au comparat rezultatele obtinute cu cele pentru magnetita neacoperita si cu datele din literatura. Particulele acoperite de Ma-PDMS-TES₁ prezinta o valoare a magnetizatiei masica de saturatie de 46 emu/g, iar particulele Ma-PDMS-TES₂ de 45 emu/g (figura III.21b.).

Fig. III.21. Curbele de magnetizare pentru particulele (a) Ma si (b) Ma-PDMS-TES₁

Proprietatile reologice ale fluidului magnetic pe baza de PDMS si particule Ma-PDMS-TES₂

Figura III.22. prezinta variatia vascozitatii functie de viteza de forfecare pentru supernatanti (suspensii de 250 nm pentru Ma-PDMS-TES₂ in PDMS_{10 000} si 500 nm pentru Ma-PDMS-TES₂ in D₄) la diferite campuri magnetice.

Fig. III.22. Influenta vitezei de forfecare asupra vascozitatii (curbe de curgere la diferite valori ale campului magnetic) pentru suspensiile de particule Ma-PDMS-TES₂ in D₄ (a) si in PDMS_{10 000} (b) dupa 90 de zile; Variatia vascozitatii pentru fluidele transportoare D₄ (\blacksquare) si PDMS₁₀₀₀₀ (\blacktriangle) (c)

Vascozitatea probelor la camp magnetic zero depinde de masa moleculara a fluidului "transportor" pentru acelasi tip de particule dispersate. Pentru aceeasi clasa de polimeri cu rol de fluid transportor, cresterea masei moleculare conduce la cresterea vascozitatii. La valori mici ale vitezei de forfecare, vascozitatea fluidului magnetic este ridicata deoarece particulele dispersate formeaza "clusteri". Odata cu cresterea vitezei de forfecare vascozitatea scade pana la o valoare specifica campului magnetic aplicat, indicand distrugerea totala sau partiala a "clusterilor"¹⁷.

III.1.2.3. Sinteza si caracterizarea particulelor magnetice acoperite cu PDMSg-E

In acest capitol sunt prezentate aspecte privind sinteza polidimetilsiloxanului grefat cu grupari esterice (PDMSg-E), utilizat ca surfactant pentru acoperirea, prin intermediul legaturilor covalente, a particulelor de magnetita. Acoperirea particulelor magnetice a avut loc intr-o singura etapa prin co-precipitarea la pH=9-11 a sarurilor de fier intr-un amestec apa – diclormetan si surfactant¹⁸.

III.1.2.3.1. Sinteza copolimerului PDMSg-E

Copolimerul (PDMSgE) a fost obtinut printr-o metoda de sinteza in mai multe etape (Schema III.11.).

Schema III.11. Sinteza copolimerului PDMSg-E

III.1.2.3.2. Sinteza particulelor magnetice miez-coaja Ma-PDMSg-E

Particulele de magnetita *miez-coaja* au fost obtinute *in situ*, intr-un amestec apadiclormetan prin co-precipitarea sarurilor de fier la un pH~9-10 in prezenta surfactantului PDMSg-E.

Schema III.12. Procesul de acoperire a particulelor de magnetita (Ma) cu PDMSg-E

III.1.2.3.3. Caracterizare structurala, morfologica, dimensionala si a proprietatilor magnetice ale particulele miez-coaja Ma-PDMSg-E

Structura particulelor de magnetita acoperite cu PDMSg-E a fost determinata prin spectroscopie FT-IR si analize termogravimetrice. S-au determinat, de asemenea, dimensiunile particulelor prin difuzia dinamica a luminii, morfologia prin AFM si SEM, si proprietatile magnetice prin masuratori VSM.

Fig. III.29. Spectrele FT-IR ale (a) **PDMSg-E** si(b) **Ma-PDMSg-E**

Studiile de descompunere termica confirma compozitia particulelor de magnetita. Analiza termogravimetrica (ATG) si analiza termica diferentiala (DTG) (Figura III.30.) a particulelor *miez-coaja* Ma-PDMSg-E evidentiaza o pierdere de masa de aproape 9% (specifica secventei organice din lantul siloxanic) pana la o temperatura de 250° C. Alte doua pierderi de masa de ~4 si de 2%, se inregistreaza in jurul temperaturii de 380° C si respectiv 680° C atribuite descompunerii lantului polisiloxanic si respectiv transformarii magnetitei in maghemita. La 850° C, masa reziduala de aproape 85%, este corespunzatoare continutului de magnetita.

Fig. III.30. Curbele termogravimetrice (TG, DTG) ale particulelor Ma-PDMSgE

Analize dimensionale. Diametrul hidrodinamic al particulelor acoperite a fost calculat cu ajutorul difuziei dinamice a luminii prin metoda CONTIN obtinandu-se 172,3 nm, iar indicele de polidispersitate dimensionala de 0,392 (figura III.31a). Nanoparticulele au fost

dispersate in toluen, considerat un solvent bun pentru polisiloxani, si au fost ultrasonicate timp de 5 min.

Diametrul mediu	172,3±49 nm
Indicele de polidispersitate	0,392
Temperatura	24,8°C
Solvent	Toluen

Fig. III.31. Distributia numerica dimensionala a particulelor Ma-PDMSg-E

Proprietatile magnetice ale particulelor Ma-PDMSg-E determinate la temperatura camerei, prin magnetometrie, sunt prezentate in figura III.32. Magnetizatia masica de saturatie a particulelor Ma-PDMSg-E are valoarea de 47,194 emu/g, valoare mai mica decat cea a particulelor de magnetita neacoperite (64 emu/g)⁹. Aceasta poate fi atribuita densitatii mici a componentei magnetice din structura particulelor acoperite^{19,20} pentru unitatea de masa, neuniformitatii suprafetei si procesului de oxidare al magnetitei in timpul acoperirii cu polimer.

Fig. III.32. Curba de magnetizare a particulelor magnetice acoperite

III.2. Particule magnetice hidrofile cu legaturi covalente intre miez si coaja

Particulele de tip *miez-coaja* cu invelis hidrofil au fost obtinute prin condensarea gruparilor hidroxilice de pe suprafata particulelor de magnetita (Fe-OH) cu gruparile functionale etoxisilil ale monomerului 3-aminopropiltrietoxisilan (APTES), respectiv metoxisilil ale monomerului 3-glicidoxipropiltrimetoxisilan (GOPS). Caracterul hidrofil al particulelor obtinute este dat de gruparile aminice respectiv epoxidice atasate monomerilor, grupari ce nu interactioneaza cu suprafata particulelor de magnetita.

Schema III.13. Obtinerea particulelor Ma-APTES

Spectroscopia fotoelectronica in domeniul razelor X (XPS)

Pentru studiul suprafetei si compozitiei structurale a particulelor miez-coaja s-a utilizat spectroscopia fotoelectronica in domeniul razelor X (XPS).

Spectrul XPS (figura III.34.) al probei de Ma-APTES prezinta picuri bine definite pentru atomii de C, O, Si, Cl si N si un pic slab pentru atomul de Fe, sugerand faptul ca particulele de magnetita sunt acoperite de un film foarte subtire de monomer. Proba a fost analizata in modul magnetic datorita magnetizarii probei. Analiza in modul magnetic prezinta o sensibilitate mult mai buna (de cca. 4-5 ori) fata de analiza XPS in modul electrostatic.

Pentru evidentierea tipurilor de legaturi la care participa diversi atomi din proba s-a realizat deconvolutia spectrelor de inalta rezolutie corespunzatoare fiecarui tip de atomi in picurile componente. Prezenta atomului de Si2p in structura probei de Ma-APTES este evidentiataprin aparitia picului de la 102,4 eV specifice Si. Semnalul corespunzator atomului de C1s prezinta trei picuri specifice. Primele doua picuri pot fi atribuite legaturilor C-C si C-N, iar al treilea de intensitate mai mica legaturii O-C=O. Semnalul corespunzator atomului silanic. Spectrul specific atomului O1s poate fi descompus in trei picuri corespunzatoare gruparilor C-O si Si-O, iar al treilea corespunzator unui oxid anorganic provenit din structura magnetitei. Semnalul corespunzator atomului de Fe2p este foarte slab, facand dificila confirmarea structurii magnetitei, se poate afirma totusi ca este un oxid de fier.

	Energia de legatura (eV)	% atomice
Si2p	102,4	12,4
Cl2p	198,2	8,2
C1s	285,2	50,7
N1s	400,9	8,0
O1s	532,3	20,3
Fe2p	711,5	0,4

Fig. III.34. Spectrul XPS al particulelor Ma-APTES 22

Fig. III.35. Spectrele XPS de inalta rezolutie ale Si2p, C1p, N1s, O1s si Fe2p

Analiza componentei principale a fost utilizata pentru identificarea profilelor atomilor (Figura III.36.). Din forma profilelor se observa ca dupa bombardarea suprafetei cu ioni Ar^+ unii atomi sunt indepartati. Daca numarul de bombardari creste, la suprafata probei ramane un material pe baza de Si, o clorura anorganica (cloruri de fier), clorura de amoniu (sare de amoniu pentru co-precipitarea sarurilor de fier), clorura organica (dicloretan, solvent pentru etapa de acoperire a particulelor de magnetita), oxisilan (provenit din APTES), o amina (provenita din structura monomerului) si atomi de Fe. In urma bombardarii succesive a suprafetei unele semnale ating o zona de platou, in timp ce alte semnale continua sa creasca sau sa scada, indicand faptul ca proba de magnetita nu este acoperita omogen de invelisul silanic.

Fig. III.36. Spectrul XPS al profilelor compozitiei procentuale pentru C1s, Si2p, O1s, Cl2p, N1s si Fe2p

> Analizele de distributie dimensionala (DLS)

Analizele de distributie dimensionala (DLS) pentru particulele de magnetita (Ma) sunt prezentate in Tabelul III.1. (capitolul III.1.2.). In cazul particulelor de Ma-APTES (Figura III.38.) se observa ca valoarea diametrului mediu este de pana la 500 nm cu o polidispersitate dimensionala mica de 0,2. Deoarece particulele de magnetita neacoperite au un diamentru mediu de 250 nm, se poate considera ca grosimea medie a invelisului este de 125 nm.

Fig. III.38. Diagrama de distributie dimensionala a particulelor de Ma-APTES

Proprietatile magnetice

Figura III.39. prezinta curba de magnetizare obtinuta pentru particulele de Ma-APTES. Se remarca o scadere a magnetizatiei masica de saturatie a particulelor acoperite (22 emu/g) comparativ cu a celor neacoperite (64 emu/g), scadere ce se datoreaza, grefarii particulelor de APTES pe suprafata particulelor de magnetita, ceea ce conduce la o diminuare a concentratiei particulelor de magnetita in aceeasi unitate de volum.

Fig. III.39. Curba de magnetizare pentru particulele de Ma-APTES

III.2.2. Sinteza si caracterizarea particulelor magnetice miez-coaja, miez: magnetita, coaja:3-glicidoxipropiltrimetoxi (Ma-GOPS)

Gruparile epoxidice grefate pe suprafata particulelor de magnetita prezinta comportare specifica in reactiile cu apa, acizi sau alcooli. Literatura descrie transformari ale polisiloxanilor functionalizati cu grupari epoxidice cu piperidina²¹, cu acizi carboxilici²², derivati organici ai azotului^{23,191} sau polimeri adecvat functionalizati²⁴. Particulele de magnetita preformate au fost acoperite prin legare covalenta^{3, 25} cu 3glicidoxipropiltrimetoxisilan (GOPS) ca urmare a reactiei de condensare dintre gruparile hidroxilice de pe suprafata particulelor de magnetita (Fe-OH) si gruparile metoxisilice ale monomerul silanic (Schema III.9.). Invelisul de 3-glicidoxipropiltrimetoxisilan (GOPS) stabilizeaza dimensional particulele de magnetita si face posibila obtinerea de fluide magnetice stabile.

Schema III.14. Obtinerea particulelor de Ma-GOPS

Schema III.15. Reactii secundare posibile ale gruparilor metoxisilil

Legarea covalenta a 3-glicidoxipropiltrimetoxisilan prin intermediul gruparilor etoxidice de suprafata particulelor de magnetita a fost pusa in evidenta printr-o serie de metode de caracterizare din punct de vedere structural cum ar fi: spectroscopia FT-IR si analiza termogravimetrica (ATG), iar din punct de vedere morfologic s-a utilizat spectroscopia de forta atomica (AFM) si microscopia electronica de baleiaj (SEM), combinata cu spectroscopia de raze X cu energie dispersativa (ESEM-EDX), si de asemenea au fost analizate si proprietatile magnetice ale particulelor acoperite si neacoperite.

Microscopia de forta atomica

Pentru particulele de Ma, Ma-GOPS si pentru agregatele de Ma-GOPS au fost obtinute valori medii ale r_{Ma} , $r_{Ma-GOPS}$ si $r_{aggregates}$, de 98 ± 20, 132 ± 20 si respectiv 320 ± 20 nm. Diferenta dintre valorile lui r corespunzatoare particulelor individuale de Ma-GOPS si de Ma corespunde valorii grosimii invelisului particulelor $r_{Ma-GOPS} - r_{Ma} \approx 34 \pm 20$ nm. Aceasta evidentiaza posibilitatea ca invelisul sa prezinta o structura mai complexa decat cea descrisa in Schema III.9. O parte dintre gruparile metoxisililice din molecula de GOPS, dau reactii secundare (condensare, hidroliza), urmate de alte reactii de condensare.

Fig. III.44. Imaginile AFM pentru particulele de Ma: (a) imagine 2D; (b) imagine 3D

Fig. III.45. Imaginile AFM ale particulelor de magnetita acoperite: (a) imagine AFM-2D; (b) imagine AFM-3D

Microscopia electronica de baleiaj

Forma sferica precum si dimensiunile particulelor de Ma-GOPS au fost confirmate si de analizele SEM (Figura III.46.).

Figura III.46. Imagine ESEM pentru particulele de Ma-GOPS

Proprietatile magnetice

Pentru studiul comportarii magnetice a particulelor de Ma-GOPS au fost realizate masuratori de magnetizare, iar rezultatele obtinute au fost comparate cu cele ale particulelor de Ma neacoperite (figura III.48.). Magnetizatia masica de saturatie a particulelor de magnetita neacoperite este de 64 emu/g (coercivitate: 0,70146 G)²⁶, iar a celor de Ma-GOPS de 46 emu/g (coercivitate: 1,2667 G). Scaderea magnetizatiei masice de saturatie in cazul particulelor magnetice acoperite se poate atribui mai multor factori, cum ar fi:

- concentratia in magnetita, din aceeasi unitate de volum, este mai mica;

- atasarea invelisului inactiv magnetic la suprafata particulelor de magnetita;

- existenta unui proces de oxidare a particulelor de magnetita in timpul reactiei cu GOPS^{31,169}.

Fig. III.48. Curba de magnetizare obtinuta prin metoda VSM la temperatura camerei pentru particulele Ma-GOPS

Capitolul IV. Particule magnetice miez-coaja hidrofobe cu legaturi de hidrogen intre miez si coaja

Datorita aplicatiilor industriale (cataliza, purificarea apelor, industria farmaceutica, etc.), chimia suprafetei particulelor de magnetita joaca un rol hotarator. Particulele de magnetita se obtin in medii apoase din care cauza atomii de fier de la suprafata, care nu sunt legati de oxigen actioneaza ca acizii Lewis, pot coordina moleculele de apa (pot ceda o pereche de electroni) care disociaza rapid, conducand la obtinerea de legaturi hidroxilice reactive de tip Fe-OH.

Literatura de specialitate prezinta ca stabilizator pentru particulele de magnetita acidul oleic (acid nesaturat, cu opt atomi de carbon si cu o grupare terminala carboxilica $CH_3(CH_2)_7CH=CH(CH_2)_7COOH$ (Schema IV.1.). Gruparea carboxilica a acestuia participa la formarea de legaturi de hidrogen cu gruparile hidroxilice de la suprafata particulelor de magnetita, si astfel are loc *invelirea* particulelor si totodata stabilizarea acestora impotriva aglomerarilor. Particulele de magnetita acoperite cu acid oleic sunt folosite in obtinerea de fluide magnetice hidrocarbonate^{27,28}.

Schema IV.1. Structura chimica a acidului oleic

O alta alternativa de acoperire a particulelor de magnetita o reprezinta utilizarea copolimerilor amfifili care conduc la obtinerea de particule *miez-coaja* cu posibile aplicatii in transportul de medicament. Utilizarea acestui tip de acoperiri prezinta un interes crescut datorita posibilitatii de a controla proprietatile dispersiilor si investigarii in detaliu a fortelor care determina agregarea^{29,30,31,32,33,34}. Functie de marimea particulelor, de proprietatile magnetice, de structura chimica a copolimerului si masa sa moleculara particulele *miez-coaja* (*miez:* magnetita, *coaja:* copolimer) pot fi utilizate pentru impunerea unui anumit comportament specific al sistemelor biologice complexe. In acest context, este foarte importanta cunoasterea comportamentului si proprietatilor in solutie a copolimerilor utilizati pentru acoperirea particulelor de magnetita.

Copolimerii amfifili introdusi intr-un solvent selectiv pentru una sau doua secvente, prezinta o separare de faze cu autoasamblare in micele, care contin un *miez*, constituit dintr-o secventa insolubila in solventul de lucru, inconjurat de un invelis solubil in solventul de lucru²⁹. Intr-un amestec de solventi polari/nepolari secventele hidrofile sunt directionate catre solventul polar, iar secventele hidrofobe catre cel nepolar. Tinand cont de acest comportament specific al copolimerilor amfifili, se poate prestabili o relatie structura-proprietati si implicit un design al nano-obiectelor si nanoparticulelelor³⁵. Recent, s-a studiat sinteza reactoarelor moleculare active pe baza de poliorganosiloxani amfifili utilizati in obtinerea de coloizi pe baza de Zn²⁺ si de aur^{36,37,38,39}. Incompatibilitatea polidimetilsiloxanului (PDMS) cu marea majoritate a polimerilor organici⁴⁰ datorita hidrofobicitatii este balansata de prezenta unitatilor solubile de polietilenoxid (PEO). Copolimerii dibloc polidimetilsiloxan-poli(etilen oxid) (PDMS-PEO) sunt puternic amfifili si se autoasambleaza in solutie cu formarea unor morfologii diferite in functie de natura solventului, gradul de polimerizare si de proportia intre secventele hidrofobe si hidrofile²⁹.

Copolimerii dibloc amfifili care contin grupari carboxilice se utilizeaza la obtinerea de nanofluide magnetice stabilizate steric⁴¹. PDMS-PEO actioneaza ca surfactant de stabilizare pentru particulele de magnetita datorita capacitatii gruparilor carboxilice de a interactiona prin legaturi de hidrogen cu gruparile hidroxilice de pe suprafata particulelor de magnetita^{41,42}.

Scopul acestui capitol este sinteza, caracterizarea si studiul micelizarii atat in solutie apoasa cat si in toluen a copolimerului amfifil grefat polidimetilsiloxan- g- α -carboxiester-poli(etillen oxid) (PDMSgPEO-COOH)^{43,44}, precum si formarea particulelor magnetice *miez-coaja* (*miez:* magnetita, *coaja*: PDMSgPEO-COOH)^{45,46}, prin formarea legaturilor de hidrogen intre gruparilor hidroxilice ale magnetitei si gruparile carboxilice ale copolimerului. Obtinerea magnetitei (Ma) precum si procesul de acoperire al particulelor au loc intr-o singura etapa, denumita *in-situ*.

IV.1. Sinteza copolimerului PDMSgPEO-COOH

Copolimerul PDMSgPEO-COOH a fost obtinut cu un randament mic (60-65%) datorita reactiilor secundare (descompunerea gruparilor COOH si reticularea) precum si datorita procedurii laborioase de purificare a produsului.

Schema IV.2. Sinteza copolimerului poli{dimetilsiloxan-g-[carboxiester-poli(etilen oxid)]} (PDMSgPEO-COOH)

IV.2. Sinteza de particule magnetice miez-coaja Ma-PDMSgPEO-COOH cu legaturi de hidrogen intre miez si coaja

Particulele de magnetita au fost obtinute prin co-precipitarea ionilor de Fe^{2+} si Fe^{3+} , conform metodei prezentate in capitolul III.1.1.1.

Schema IV.3. Obtinerea particulelor miez-coaja Ma-PDMSgPEO-COOH

IV.3. Caracterizarea copolimerului si a particulelor miez-coaja

Fig. IV.1. Spectrele FT-IR (KBr) ale H-PDMS, PDMSgPEO-OH si copolimerului PDMSgPEO-COOH

Spectrul FT-IR al copolimerului grefat PDMSgPEO-COOH (Figura IV.1.) a evidentiat existenta benzilor caracteristice ambelor secvente polimerice.

IV.3.2. Caracterizarea particulelor magnetice "miez-coaja" Ma-PDMSgPEO-COOH

In cazul particulelor de Ma-PDMSgPEO-COOH aceste benzi se deplaseaza la 626, 583si 444 cm⁻¹ ceea ce demonstreaza formarea legaturilor Fe-O-Si². De asemenea, spectrul FT-IR al particulelor de Ma-PDMSgPEO-COOH prezinta o banda noua extinsa la 1096 cm⁻¹ specifica vibratiei de intindere a legaturilor Si-O-Si care este suprapusa cu banda corespunzatoare vibratiilor gruparilor C-O-C. In spectrul FT-IR al particulelor miez-coaja se observa doua benzi de absorbtie la 1730 si la 1630 cm⁻¹ specifice vibratiilor gruparilor C=O carboxilice si/sau esterice. Dupa complexarea gruparilor -COOH pe suprafata particulelor de magnetita (realizarea legaturilor de hidrogen intre gruparile carboxilice din structura copolimerului si gruparile hidroxilice de pe suprafata particulelor de magnetita) se observa deplasarea benzii de absorbtie specifice gruparii carboxilice C=O din PDMSgPEO-COOH de la 1735 cm⁻¹ la 1730 cm⁻¹, in timp ce banda corespunzatoare gruparii esterice C=O din copolimer prezinta o deplasare de la 1645 la 1630 cm⁻¹. Banda larga de la 3406 cm⁻¹. caracteristica gruparilor hidroxilice si apei adsorbite de pe suprafata particulelor de magnetita, scade in intensitate in spectrul Ma-PDMSgPEO-COOH, si totodata se observa formarea a doua benzi la 3139 si la 3045 cm⁻¹ datorate formarii legaturilor de hidrogen dintre gruparile – OH de pe suprafata magnetitei si gruparea –COOH din copolimer⁴⁷.

Fig. IV.12.Spectrele FT-IR ale particulelor de Ma (A); PDMSgPEO-COOH (B) si Ma-PDMSgPEO-COOH (C)

Pentru analiza suprafetei si a compozitiei structurale a particulelor *miez-coaja* s-a utilizat *spectroscopia fotoelectronică in domeniul razelor X (XPS.)*

Spectrul XPS "survey" al probei de Ma-PDMSgPEO-COOH (figura IV.13.) contine picurile caracteristice atomilor din structura probei.

Existenta in structura probei a atomilor de Si2p a putut fi pusa in evidenta prin aparitia picului de la 100 eV in spectrul din figura IV.13. Atomii de C1s prezinta in spectru un pic in jurul valorii de 280 eV. Picul corespunzator atomului de O1s apare la o valoare a energiei de legatura de 530 eV. Pentru atomul de Fe apar mai multe picuri corespunzatoare atomilor Fe2p, Fe3s si Fe3p.

Fig. IV.13. Spectrul XPS survey al particulelor Ma-PDMSgPEO-COOH; Tabel: compozitia atomica obtinuta din analiza XPS a probei Ma-PDMSgPEO-COOH

Fig. IV.14. Deconvolutia spectrului XPS de inalta rezolutie al C1s; Tabel: Atribuirea atomilor de C la legaturile care sunt posibile cu atomul de C

Fig.IV.15. Deconvolutia spectrului XPS de inalta rezolutie alatomului Fe2p

Fig.IV.16. Deconvolutiile spectrelor XPS de inalta rezolutie al O 1s si al Si 2p; Tabel: atribuirile picurilor de O 1s si Si 2p

Analizele XPS confirma acoperirea particulelor de magnetita cu un invelis siloxanic prin inregistrarea spectrelor de inalta rezolutie specifice atomilor de Si 2p, C 1s, O 1s si Fe 2p.

Din imaginile *AFM* ale filmului obtinute prin depunerea unui microvolum de particule dispersate in octametilciclotetrasiloxan pe o suprafata de sticla in absenta campului magnetic (figura IV.17.) se observa formatiuni de forma sferica cu morfologie de tip *miez-coaja* si cu diametru a acesteia de 500 nm. Imaginile de contrast de faza nu evidentiaza o modificare

semnificativa a acesteia (doar $4,5^{0}$), ceea ce indica faptul ca particulele sunt acoperite de polimer. Variatiile de faza mici sunt datorate diferentelor de inaltime ale particulelor.

Fig. IV.17. Imaginile AFM de inaltime (a) si de faza (b) pentru particulele Ma-PDMSgPEO-COOH (suprafata de scanare 5 x 5 μ m², 22 particule)

> Pentru studiul comportarii magnetice a particulelor de Ma-PDMSgPEO-COOH au fost realizate *masuratori de magnetizare* (Figura IV.19.). Valoarea mai mica a magnetizatiei masice de saturatie (54,152 emu/g) comparativ cu cea pentru magnetita preformata (64 emu/g) este atribuita efectului de suprafata, adica invelisului de polimer inactiv magnetic. Nu se evidentiaza proprietati de histerezis, curbele caracteristice fiind complet reversibile.

Fig. IV.19. Curba de magnetizare a particulelor de Ma-PDMSgPEO-COOH

Capitolul V. Particule magnetice miez-coaja obtinute prin metode combinate

Acest capitol trateaza sinteza si caracterizarea particulelor de magnetita de tip *miez-coaja* prin mojarare (cunoscuta sub denumirea de metoda mecanochimica)⁴⁸, fiind o metoda economica, usoara, care se realizeaza fara utilizarea solventilor toxici si nu necesita aparatura performanta.

Sinteza particulelor de magnetita (Mmoj) are loc prin mojararea intensa, in atmosfera inerta, a amestecului format din clorurile ferice si feroase hidratate cu 6 si respectiv 4 molecule de apa, hidroxid de sodiu (sub forma de pelete macinate) si un surfactant (pentru a impiedica aglomerarea particulelor de magnetita formate). Surfactantul poseda in structura chimica grupari reactive capabile sa dea legaturi de hidrogen cu gruparile hidroxilice (Fe-OH) de pe suprafata magnetitei. Cel mai utilizat surfactant in procesul de mojarare este amestecul acid oleic-oleilamina (1:1)⁴⁹, care imprima la suprafata particulei de magnetita un caracter hidrofob.

Pentru schimbarea caracterului hidrofob intr-unul hidrofil suprafetei particulelor de magnetita s-a recurs la inlocuirea invelisului de acid oleic cu 3-aminopropiltrietoxisilan (imprima suprafetei, prin gruparile aminice, un caracter hidrofil). De asemenea, s-a urmarit influenta raportului molar Fe^{2+}/Fe^{3+} asupra dimensiunilor finale ale particulelor de magnetita⁵⁸ observandu-se faptul ca dimensiunile particulelor obtinute sunt direct proportionale cu raportul molar.

V.1. Sinteza particulelor de magnetita cu invelis hidrofob prin mojarare (Mmoj)

S-au utilizat trei rapoarte molare $Fe^{2+}/Fe^{3+} = 0,35$; 0,25; 0,15 obtinandu-se particule magnetice *miez-coaja* de diverse dimensiuni (400, 15 si 9 nm).

V.2. Sinteza particulelor de magnetita cu invelis hidrofil (Mmoj-APTES)

Reactia particulelor Mmoj cu monomerul 3-aminopropiltrietoxisilan (APTES) este o reactie de schimb de ligand si anume interschimbarea invelisului de acid oleic-oleilamina cu APTES (schema V.2).

Schema V.1. Ilustrarea schematica a reactiei de obtinere a particulelor de Mmoj

Schema V.2. Obtinerea de particule miezcoaja prin interschimbarea invelisului hidrofob cu un invelis hidrofil

V.3. Caracterizarea produsilor

> In spectrul FT-IR al particulelor de magnetita acoperite cu aductul acid oleicoleilamina (figura VI.1a) se evidentiaza picuri caracteristice legaturilor Fe-O de la 457, 626,8 si 695,3 cm⁻¹ si banda de la 3391 cm⁻¹ característica legaturii Fe-OH. Prezenta benzilor de la 1406 cm⁻¹ (atribuita vibratiei de legatura C-H din structura aductului), 2852-2923 cm⁻¹ (corespunzatoare legaturilor C-H din secventa hidrocarbonata a complexului) si a benzii de la 1530 cm-1 (atribuita structurii bidentate -COO-Fe), demonstreaza adsorbtia pe suprafata particulelor de magnetita numai al acidului oleic. Oleilamina este adsorbita la suprafata particulei de magnetita doar daca se foloseste 100% oleilamina, insa in cazul utilizarii unui amestec de surfactanti (in cazul nostru acid oleic-oleilamina) are loc legarea preferentiala a acidului deprotonat carboxilat⁵⁰. Dupa interschimbarea surfactantului hidrofob cu unul hidrofil de APTES particulele prezinta picuri caracteristice invelisului hidrofil (figura V.1b). Prezenta legaturii covalente dintre monomerul silanic si suprafata magnetitei este demonstrata prin aparitia benzii de la 1027-1121 cm⁻¹ caracteristica pentru legaturile Si-O-Fe si Si-O-Si. Benzile de absorbtie de la 2929 cm⁻¹ si 1313 cm⁻¹ sunt asociate cu banda de vibratie a legaturilor -CH₂ din gruparea aminopropil si respectiv legaturilor C-N, iar banda de la 924 cm⁻¹ este specifica legaturilor Si-CH₂. Schimbarea ligandului poate fi demonstrata si prin deplasarea benzilor caracteristice legaturii Fe-O de la 457, 626.8 695 cm⁻¹ pentru particulele invelite cu acid oleic la 490, 529 si 696 cm⁻¹ pentru particulele cu invelis hidrofil. Banda de absorbtie de la 3430 cm⁻¹ este caracteristica gruparilor libere terminale NH_2 - din structura APTES, banda acoperita cu banda de vibratie a gruparilor –OH.

Fig. V.1. Spectrele FT-IR pentru: (a) Mmoj; (b) Mmoj-APTES

Analize termogravimetrice

Curbele TG si DTA pentru particulele Mmoj-APTES (Figura V.2.) indica faptul ca odata cu cresterea temperaturii degradarea are loc in trei trepte majore de degradare indiferent de viteza de incalzire, remarcandu-se faptul ca odata cu cresterea vitezei de incalzire are loc o deplasare a maximului de degradate pentru fiecare treapta spre valori mari ale temperaturilor de descompunere termica⁵¹ (Figura V.2.). De asemenea, se remarca o delimitare mai buna a celor trei intervale de descompunere odata cu scaderea vitezei de incalzire.

Fig. V.2. Curbele TG/DTG inregistrate la diferite viteze de incalzire pentruMmoj-APTES: (1) 5 Kmin⁻¹; (2) 10 Kmin⁻¹; (3) 20 Kmin⁻¹

> Analize de dimensiune, polidispersitate si potential zeta pentru particulele miezcoaja hidrofile

In analiza dimensionala s-a urmarit influenta raportului Fe^{2+}/Fe^{3+} utilizat in sinteza de particule de magnetita. Tabelul V.4 si figurile V.9-V.11. prezinta caracteristicile dimensionale pentru trei sarje de particule obtinute prin mojararea sarurilor de fier in prezenta de acid oleicoleilamina si hidroxid de sodiu cu trei rapoarte molare Fe^{2+}/Fe^{3+} .

Tabel V.4. Caracterizarea dimensionala a particulelor de magnetita invelite cu acid oleicoleilamina in functie de raportul molar Fe²⁺/Fe³⁺

Cod	Raport molar Fe ²⁺ /Fe ³⁺	Diametru mediu (nm)	Polidispersitate dimensionala
MmojI	0,35	400	0,778
MmojII	0,25	15	0,221
MmojIII	0,15	9	0,316

Tabel V.4. Diametrele medii d₁₀, d₅₀ si d₉₀ ale particulelor hidrofobe si hidrofile

Cod proba	d_{I0}	d_{50}	d_{90}
MmojI	302,5 nm	347,8 nm	498,9 nm
MmojII	11,4 nm	14 nm	19,6 nm
MmojIII	6,9 nm	8,1 nm	11,7 nm
Mmoj-APTES	25,9 nm	30,1 nm	42,2 nm

Particulele magnetice cu suprafata hidrofila (cod proba: Mmoj-APTES), obtinute prin interschimbarea invelisului hidrofob de acid oleic cu APTES (Capitolul V.2.) prezinta un diametru mediu de 33,9 nm si indicele de polidispersitate de 0,512 (Figura V.12.).

Fig. V.12. Distributia numerica diferentiala pentru particulele Mmoj-APTES

Potentialul zeta (ζ) pentru particulele cu invelis hidrofil Mmoj-APTES a fost determinat cu analizorul DelsaNano echipat cu modulul DelsaNanoAT Autotitrator. Astfel, se constata ca valoarea potentialului zeta (Figura V.13) este pozitiva atunci cand valoare pH-ului este cuprinsa in intervalul 3-5,73, zero pentru pH=5,73 (denumita punctul izolelectric (pH_{ie})) sau negativa pentru pH cuprins in intervalul 5,73-8,3. De asemenea, se observa ca variatia potentialului zeta in functie de pH (ζ =f(pH)) este o curba sinusoidala ce prezinta o valoare maxima pozitiva pentru perechea de puncte ζ =48,74 mV si pH=3,2 si o valoare maxima negativa pentru perechea ζ = -58,17 mV si pH= 6,81, fiind punctele in care solutia coloidala prezinta cea mai buna stabilitate. Din curbele de distributie Intensitate = f(ζ) pentru anumite valori diferite ale pH-ului(Figura V.14., Tabel V.6.) se observa ca sistemul coloidal prezinta valori mari ale intensitatilor pentru ζ = 48,74; 39,73; 32,38 si -58,17 mV, valori corespunzatoare valorilor de pH de 3,20; 5,08; 8,88 si, respectiv, 6,81. In concluzie, particulele Mmoj-APTES prezinta o stabilitate ridicata in mediu apos la pH neutru, fapt ce le recomanda pentru potentiale aplicatii biomedicale.

Fig. V.13. Variatia potentialului zeta in functie de pH pentru particulele Mmoj-APTES

Fig. V.14. Curbele de distributie ale potentialului zeta in functie de pH; Tabel V.6. Valorile potentialului zeta, pH-ului si mobilitatea particulelor hidrofile Mmoj-APTES

Proprietatile magnetice

Din curbele de magnetizare (Figurile V.19.; V.20.) pentru particulele in stare solida si pentru ferofluidele corespunzatoare s-a constatat ca atat particulele hidrofobe (Mmoj) cat si cele hidrofile (Mmoj-APTES), sunt superparamagnetice, avand aceleasi valori pentru magnetizatia masica daca ne raportam la unitatea de masa. Prin inlocuirea invelisului hidrofob de acid oleic cu un invelis hidrofil de APTES proprietatile magnetice au fost conservate, realizandu-se functionalizarea suprafetei nanoparticulelor in sensul dorit de obiectivele tezei.

Fig. V.19. Curba de magnetizare pentru particulele hidrofobe (Mmoj) in stare solida (a) si dispersate in toluen (ferofluid) (b)

Fig. V.20. Curba de magnetizare pentru particulele hidrofile (Mmoj-APTES) in stare solida (a) si dispersate in apa (ferofluid) (b)

Capitolul VI. Concluzii generale

Teza de doctorat intitulata **Particule cu proprietati magnetice** prezinta rezultatele obtinute in cadrul grupului nostru de cercetare cu privire la obtinerea si caracterizarea de particule magnetice. Obiectivul principal l-a constituit obtinerea prin doua metode (co-precipitare si mojarare) de particule care prezinta magnetizatie si stabilizarea acestora cu diferiti compusi mic/macromoleculari cu siliciu. Structura surfactantilor macromoleculari utilizati a fost determinata prin diferite metode, iar particulele magnetice obtinute in urma procesului de acoperire au fost caracterizate din punct de vedere structural, morfologic, dimensional si al proprietatilor magnetice.

Particulele magnetice obtinute pe baza de magnetita pot fi dispersate in diferite fluide transportoare hidrofobe sau hidrofile in functie de caracterul invelisului acestora. Rezultatele obtinute prin diferite metode de analiza au evidentiat legarea chimica/fizica a invelisului de suprafata particulelor de magnetita, obtinerea de particule acoperite cu dimensiuni de ordinul nano-/micrometrilor (nu depasesc 1µm), cu forma relativ sferica si care prezinta o polidispersitate scazuta. Toate particulele obtinute prezinta magnetizatie si sunt superparamagnetice. Valorile mai scazute ale magnetizatiei masice ale particulelor miez-coaja fata de magnetita de la care s-a plecat se datoreaza invelisului de surfactant nemagnetic.

Majoritatea particulelor obtinute pot fi utilizate in diferite ramuri ale industriei cum ar fi cele mecanice sau chimice datorita dimensiunilor de sute de nanometri. Particulele cu invelis hidrofil pot fi aplicabile in domeniul biologic prin functionalizarea acestora cu diferite entitati biologice care permit transportul la tinta al medicamentelor.

In functie de modul de acoperire si de natura surfactantului s-au stabilit urmatoarele:

Pentru obtinerea particulelor de magnetita s-a plecat de la doua metode diferite: coprecipitatea si mojararea. Co-precipitarea a fost realizata prin doua variante: in absenta stabilizatorului sau in prezenta stabilizatorului. In urma analizelor efectuate la produsii finali s-a demonstrat ca prin folosirea primei metode se obtin dimensiuni ale particulelor mai mici, caracteristica foarte importanta in aplicatiile ulterioare ale acestor particule. Comparativ cu metoda prin mojarare insa se observa ca in cazul ultimei metode dimensiunile sunt mai mici fiind cuprinse in intervalul 9-33 nm.

Spectrele FT-IR ale particulelor magnetice cu invelis hidrofob/hidrofil obtinute prin legaturi covalente intre miez si coaja evidentiaza formarea legaturii Si-O-Fe prin aparitia benzii caracteristice legaturii Si-O-Si in spectrul FT-IR.

Analiza particulelor miez-coaja a evidentiat aparitia, alaturi de legaturile covalente dintre gruparile –OH ale magnetitei si gruparile functionale ale silanilor, a unor reactii secundare intre gruparile functionale pe suprafata particulelor formandu-se o retea.

S-au obtinut coloide magnetice stabile in timp care contin particule de magnetita acoperite cu PDMS-TES si care au fost suspendate in fluide siliconice. Studiile reologice ale dispersiilor au ilustrat dependenta vascozitatii de viteza de forfecare de intensitatea campului magneticsi de temperatura. Odata cu cresterea vitezei de forfecare vascozitatea scade la o valoare caracteristica campului magnetic aplicat.

♣ Copolimerul PDMSg-PEO-COOH utilizat in obtinerea particulelor cu invelis hidrofob cu legaturi de hidrogen intre miez si coaja este caracterizat de micelizarea atat in mediu apos cat si in mediu organic datorita caracterului sau amfifil. Formarea particulelor magnetice acoperite a fost evidentiata prin spectroscopie FT-IR si XPS. Analizele XPS a permis determinarea compozitiei prin aparitia unor picuri bine definite ale atomilor din structura invelisului si un pic mai slab pentru atomul de Fe sugerand faptul ca particulele de magnetita sunt acoperite de un film foarte subtire de stabilizator. Imaginile AFM au pus in evidenta o morfologie de tip "miez-coaja" cu o forma a particulelor aproximativ sferica si un diametru mediu de 500 nm. Din analizele EDX se poate observa distributia uniforma a elementelor din compozitia particulelor Ma-PDMSgPEO-COOH.

♣ Metodele combinate au permis obtinerea a doua tipuri de particule *miez-coaja*: cu invelis hidrofob si cu invelis hidrofil. Particulele cu invelis hidrofob au fost obtinute printr-o metoda fara solvent, prin mojarare. Particulele cu invelis hidrofil, solubile in apa, s-au realizat prin interschimbarea invelisului cu un aminosilan. Valoarea potentialului zeta al acestor particule hidrofile in functie de valoarea pH-ului este in afara intervalului de instabilitate (-/+30 mV).

Anexa - Lista publicatii

Participari la sesiuni stiintifice nationale si internationale

27-30 septembrie 2006

Compozite magnetice organice/anorganice

Zilele Academice Iesene, a XX-a sesiune de comunicari stiintifice a Institutului de Chimie Macromoleculara "Petru Poni", Iasi

A. Durdureanu-Angheluta, R. Ardeleanu, M. Pinteala, B.C. Simionescu, H. Chiriac, N. Lupu

9 5-7 iulie 2007

Silane Covered Magnetite Particles. Preparation and characterization

8-th International Balkan Workshop on Applied Physics, Constanta

<u>A. Durdureanu-Angheluta</u>, R. Ardeleanu, M. Pinteala, V. Harabagiu, H. Chiriac, B. C. Simionescu

❷ 26 – 30 august 2007

Particules magnétiques solubles dans l'eau

8ème Colloque Franco-Roumain sur les Polymères, Grenoble-Franta, poster 55

A. Durdureanu-Angheluta, M. Pinteala, V. Harabagiu, B. C. Simionescu

❷ 26 – 30 august 2007

Précurseurs siloxanes pour des particules magnétiques

8ème Colloque Franco-Roumain sur les Polymères, Grenoble-Franta, poster 86

L. Pricop, V. Hamciuc, A. Durdureanu-Angheluta, M. Pinteala, V. Harabagiu

22-27 septembrie 2007

New Route to End Amino-functionalized Polyoxazolines as Shell of Fe₃O₄ Nanoparticles ESF-EMBO Symposium Biomagnetism and Magnetic Biosystems Based on Molecular Recognition Processes, Spania, poster A

A. Durdureanu-Angheluta, G. David, M. Pinteala, V. Harabagiu, B. C. Simionescu 22-27 septembrie 2007

Synthesis and characterization of a new polymeric system based on polystyrene with secondary amine chain end and magnetite

ESF-EMBO Symposium Biomagnetism and Magnetic Biosystems Based on Molecular Recognition Processes, Spania, poster I

A. Farcas, <u>A. Durdureanu-Angheluta</u>, N. Marangoci, M. Pinteala, V. Harabagiu, B.C. Simionescu

@ 06-09 iulie 2008

Magnetite Particles Functionalized with a Silane Monomer (GOPS)

9-th International Balkan Workshop on Applied Physics (IBWAP 2008), Constanta

A. Durdureanu-Angheluta, A. Fifere, M. Pinteala, V. Harabagiu, L. Pricop, B. C. Simionescu

19-24 septembrie 2008

Magnetite particles functionalized with an COOH-siloxane

ESF-UB Conference in Biomedicine Nanomedicine 2008, San Feliu de Guixols, Spania

A. Durdureanu-Angheluta, M. Pinteala, L. Pricop, I. Stoica, V. Harabagiu, B.C. Simionescu

02-06 iunie 2008

Magnetite particles (Ma) functionalized with an esther grafted polysiloxane

6-th International Symposium Molecular Order and Mobility in Polymer Systems, Sankt Petersburg, Rusia

A. Durdureanu-Angheluta, M. Pinteala, L. Pricop, V. Harabagiu, B. C. Simionescu 2-03.06.2009

Micellization in amphiphilic siloxane/α-carboxyester-poly(ethylene oxide) graft copolymers solutions. Applications

Frontiers in Macromolecular and Supramolecular Science Second Cristofor I. Simionescu Symposium, Iasi, Romania <u>A. Durdureanu-Angheluta</u>, L. Pricop, M. Pinteala, R. Tigoianu, I. Stoica, A. Dascalu, V. Harabagiu, B. C. Simionescu

◎ 27 – 29 august 2009

Particule Magnetiques "Core-Shell" Obtenu par Polysiloxanes Greffe avec Carboxyliques Groups

IXème Colloque Franco - Roumain sur les Polymères "Synthese et Proprietes des Polymeres; Les Polymeres et l'Environnement" Alba Iulia, Roumanie

<u>A. Durdureanu-Angheluta</u>, L. Pricop, M. Pinteala, V. Harabagiu, B. C. Simionescu
6-8 septembrie 2011

Particules magnetiques "core-shell" solubles dans l'eau, precursors pour l'eliberation controllee des medicaments

Xème Colloque Franco Roumain sur les Polymères, Ecole des Mines de Douai, Douai, France

A. Durdureanu-Angheluta, A. Dascalu, L. Pricop, M. Pinteala, B. C. Simionescu

6-8 septembrie 2011

Influence de la chaine polymerique sur la taille des particules magnetiques

Xème Colloque Franco Roumain sur les Polymères, Ecole des Mines de Douai, Douai,

France

A. Durdureanu-Angheluta, L. Pricop, A. Dascalu, M. Pinteala, B. C. Simionescu

Lucrari publicate in reviste cotate ISI

@ Silane Covered Magnetite Particles. Preparation and characterisation

A. Durdureanu-Angheluta, R. Ardeleanu, M. Pinteala, V. Harabagiu, H. Chiriac, B. C. Simionescu

Digest Journal of Nanomaterials and Biostructures, 3 (1), 33-40, 2008

@ Glycidoxypropylsilane-functionalized Magnetite as Precursor for Polymercovered Core-shell Magnetic Particles

A. Durdureanu-Angheluta, I. Stoica, M. Pinteala, L. Pricop, F. Doroftei, V. Harabagiu, B. C. Simionescu, H. Chiriac

High Performance Polymers, 21 (5), 548-561, 2009

A. Durdureanu-Angheluta, L. Pricop, I. Stoica, C-A. Peptu, A. Dascalu, N. Marangoci, F. Doroftei, H. Chiriac, M. Pinteala, B. C.Simionescu

Journal of Magnetism and Magnetic Materials, 322, 2956–2968, 2010

@ Synthesis and micellization of polydimethylsiloxane–carboxy-terminated poly(ethylene oxide) graft copolymer in aqueous and organic media and its application for the synthesis of core-shell magnetite particles

L. Pricop, <u>A. Durdureanu-Angheluta</u>, M. Spulber, I. Stoica, A. Fifere, N. L. Marangoci, A. I. Dascalu, R. Tigoianu, V. Harabagiu, M. Pinteala, B. C. Simionescu e-Polymers, no. 093, 2010

Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface

A. Durdureanu-Angheluta, A. Dascalu, A. Fifere, A. Coroaba, H. Chiriac, M. Pinteala, B. C. Simionescu, in curs de publicare, 2011

@ Covalent coating magnetite with siloxane functionalized with esther groups

A. Durdureanu-Angheluta, M. Pinteala, L. Pricop, B. C. Simionescu, in curs de publicare, 2011

Polisiloxane networks. Synthesis and thermo-mechanical characterisation

L. Pricop, <u>A. Durdureanu-Angheluta,</u> acceptata spre publicare, Revue Roumaine de Chimie, 2011

Capitol de carte

Tailored and Functionalized Magnetite Particles for Biomedical and Industrial Applications

A. Durdureanu-Angheluta, M. Pinteala, B. C. Simionescu

Intech Open Access Publisher, Book: Materials Science, ISBN 979-953-307-485-5, edited by: Dr. Sabar Derita Hutagalung, acceptat spre publicare, 2011

Lucrari publicate in volum la manifestari internationale

New magnetic organic-inorganic conjugates

A. Durdureanu-Angheluta, M. Pinteala, R. Ardeleanu, V. Harabagiu, B.C. Simionescu, H. Chiriac, N. Lupu

Bulletin of the Transilvania University of Brasov • BRAMAT 2007, Vol.II, Brasov-Romania, p.115-118

Synthesis and characterization of a new polymeric system based on polyisoprene with secondary amine chain end and magnetite

A. Farcas, A. Durdureanu-Angheluta, M. Pinteala, V. Harabagiu

Bulletin of the Transilvania University of Brasov • BRAMAT 2007, Vol.II, Brasov-Romania, p.131-134

Particules magnetiques "core-shell" solubles dans l'eau, precursors pour l'eliberation controllee des medicaments

A. Durdureanu-Angheluta, A. Dascalu, L. Pricop, M. Pinteala, B. C. Simionescu

Xème Colloque Franco Roumain sur les Polymères, Ecole des Mines de Douai, Douai, France, 2011

Influence de la chaine polymerique sur la taille des particules magnetiques
 <u>A. Durdureanu-Angheluta</u>, L. Pricop, A. Dascalu, M. Pinteala, B. C. Simionescu

Xème Colloque Franco Roumain sur les Polymères, Ecole des Mines de Douai, Douai, France, 2011

Granturi/contracte - membru in echipa de lucru

Pe parcursul elaborarii tezei am beneficiat de sprijin financiar din urmatoarele granturi:

Nanoconjugate ale ciclodextrinelor cu eliberare controlata de principii active anti-hiv si antimicotice (CICLOMED); Contract nr 2-CEEX 06-D11-106

Nanomateriale: Interactiuni supramoleculare in sisteme polimerice si hibrizi organicianorganici; aspecte fundamentale, mecanisme, metode. CNCSIS

Retea stiintifica pentru dezvoltarea materialelor polimere multifunctionale (MULTIPOL); Contract CEEX nr. 40(510)

Adaptare de secvente de pulsuri si interconectare nationala a laboratoarelor de spectroscopie RMN supraconductoare (NMRSTAR). Contract nr. 2-CEEX06-11-41

Nanoconjugate multifunctionale pentru sinteza combinatoriala si nanomedicina. 2008 Contract CNCSIS 55GR Proiect Planuri Sectoriale 2011 - "Evaluarea potentialului romanesc de cercetare in domeniul chimiei si elaborarea strategiei nationale de cooperare internationala".

Bibliografie selectiva

¹R. Massart, *IEEE Trans Magn*.17, 1247–1248, **1981**

² <u>A.Durdureanu-Angheluta,</u> R. Ardeleanu, M. Pinteala, V. Harabagiu, H.Chiriac, B.C.Simionescu, *DJNB* 3, 33–40, **2008**

³<u>A. Durdureanu-Angheluta</u>, I. Stoica, M. Pinteala, L. Pricop, F. Doroftei, V. Harabagiu, H. Chiriac, B.C. Simionescu, *High Perform. Polym.* 21, 548–561,2009

⁴A. Durdureanu-Angheluta, M. Pinteala, R. Ardeleanu, V. Harabagiu, B.C. Simionescu, H. Chiriac, N. Lupu, New magnetic organic-inorganic conjugates, Bulletin of the Transilvania University of Brasov BRAMAT, Vol.II, Brasov-Romania, p.115-118, **2007**

⁵<u>A. Durdureanu-Angheluta</u>, R. Ardeleanu, M. Pinteala, B.C. Simionescu, H. Chiriac, N. Lupu, Compozite magnetice organice/anorganice, Zilele Academice Iesene, a XX-a sesiune de comunicari stiintifice a Institutului de Chimie Macromoleculara "Petru Poni", Iasi, 27-30 septembrie **2006**

⁶<u>A. Durdureanu-Angheluta</u>, R. Ardeleanu, M. Pinteala, V. Harabagiu, H. Chiriac, B.C. Simionescu, Silane Covered Magnetite Particles. Preparation and characterization, 8-th International Balkan Workshop On Applied Physics Constanta, Romania, July 5-7, **2007**

⁷ R.C.Plaza, J.L. Arias, M. Espin, M.L. Jimenez, A.V. Delgado, *J. Colloid Interface Sci.* 245, 86-90, **2002**

⁸ J.P. Dailey, J.P. Phillips, C. Li, J.S. Riffle, J. Magn. Magn. Mater. 194, 140-148, 1999

⁹<u>A. Durdureanu-Angheluta</u>, L. Pricop, I. Stoica, C.A. Peptu, A. Dascalu, N. Marangoci, F. Doroftei, H. Chiriac, M. Pinteala, B.C.Simionescu, *J. Magn. Magn. Mater.* 322, 2956–2968, 2010

¹⁰<u>A. Durdureanu-Angheluta</u>, M. Pinteala, L. Pricop, V. Harabagiu, B.C. Simionescu, Magnetite particles (Ma) functionalized with an esther grafted polysiloxane, 6-th International

Symposium Molecular Order and Mobility in Polymer Systems, Sankt Petersburg, Rusia, 02-06 iunie **2008**

¹¹H. Inoue, S. Kohama. J. Appl. Polim. Sci.29, 877-889,1984

¹² Y. Chujo, K. Murai, Y. Yamasnita, Y. Okumura, Makromol. Chem. 186, 1203, 1985

¹³ X. Coqueret, A. Hajaiej, A. Lablache-Combier, C. Loucheux, R. Mercier, L. Pouliquen, L. Randrianarisoa-Ramanantsoa, *Pure&Appl. Chem.* 82(8), 1603-1614, **1990**

¹⁴H. Finkeimann, G. Rehage, Mokromol. Chem. Rapid Commun. 1, 31, 1980

¹⁵ (a) B. Feng, R.Y. Hong, L.S. Wang, L. Guo, H. Z. Li, J. Ding, Y.Zheng, D.G. Wei, *Colloids Surf. A: Physicochem. Eng. Aspects*, 328, 52-59, **2008**; (b) M. Yamamura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, M.Nakamura, H.E. Toma, *J. Magn. Magn. Mater.* 279, 210-217, **2004**

¹⁶ V.S. Zaitsev, D.S. Filimonov, I.A. Presnyakov, R.J. Gambino, B. Chu, *J. Colloid Interface Sci.* 212, 49–57, **1999**

¹⁷X. Yang, C. Aldrich, Int. J. Miner. Process. 77, 95–103, 2005

¹⁸A. Durdureanu-Angheluta, L. Pricop, M. Pinteala, G. Stoian, H. Chiriac, B.C. Simionescu, Covalent coating magnetite with siloxane functionalized with esther groups, in curs de publicare, 2011

¹⁹ H. Xu, N. Tong, L. Cui, Y. Lu, H. Gu, J. Magn. Magn. Mater. 311, 125-130, 2007

²⁰ R.V. Ramanujan, Y.Y. Yeow, *Mater. Sci. Eng.* C25, 39-41,2005

²¹ I. Yilgor, J.E. Mgrath, Adv. Polym. Sci. 86, 1-87, 1988

²²L. Pouliquen, X. Coqueret, A. Lablache-Cambier, C. Loucheux, *Makromol. Chem.* 193, 1273-1282, **1992**

²³M. Pinteala, V. Harabagiu, M.N. Holerca, I.I. Negulescu, B.C. Simionescu, *Macromolecular Reports* 32 (5), 671-678, **1995**

²⁴ M. Antonietti, S. Forster, J. Hartmann, S. Oestreich, *Macromolecules* 29, 3800–3806, 1996

²⁵ <u>A. Durdureanu-Angheluta</u>, A. Fifere, M. Pinteala, V. Harabagiu, L. Pricop, B.C. Simionescu, *Magnetite particles functionalized with a silane monomer (GOPS)* Simpozionul "9th International Balkan Workshop on Applied Physics" (IBWAP 2008), Constanta, Romania, **2008**

²⁶ P.A. Dresco, V.S. Zaitsev, R.J. Gambino, B. Chu, *Langmuir*15, 1945–1951, **1999**

²⁷O. Ayala-Valenzuela, P.C. Fannin, R. Betancourt-Galindo, O. Rodriguez-Fernandez, J. Matutes-Aquino.*J. Magn. Magn. Mater.* 311, 111-113,**2007**

²⁸ X. Liu, M.D. Kaminski, Y. Guan, H. Chen, H. Liu, A.J. Rosengart, *J. Magn. Magn. Mater.* 306, 248-253, **2006**

²⁹ G. Riess, Progr. Polym.Sci. 28, 1107-1170, 2003

³⁰I. Astafieva, K. Khougaz, A. Eisenberg, *Macromolecules* 28, 7127-7134, 1995

³¹ E.A. Lysenko, T.K. Bronich, E.V. Slonkina, A. Eisenberg, V.A. Kabanov, A.V. Kabanov, *Macromolecules*, 35, 6351-6361, **2002**

³²V. Schadler, V. Kniese, T. Thurn-Albrecht, U. Wiesner, H.W. Spiess, *Macromolecules*, 31, 4828-4837,1998

³³S. Jain, F.S. Bates, *Science*, 300, 460-464, **2003**

³⁴D.E. Discher, A. Eisenberg, *Science*, 297, 964-967, 2002

³⁵ G.A. Shandryuk, E.V. Matukhina, R.B. Vasilev, A. Rebrov, G.N. Bondarenko, A.S. Merekalov, A.M. Gaskov, R.V. Talroze, *Macromolecules*, 41, 2178-2185, **2008**

³⁶A. Voronov, A. Kohut, W. Peukert, *Langmuir*, 23, 360-363, **2007**

³⁷ N. Jungmann, M. Schmidt, M. Maskos, *Macromolecules*, 36, 3974-3979, 2003

³⁸C. Racles, M. Cazacu, A. Ioanid, A. Vlad, *Macromol. Rapid Commun.*, 29, 1527-1531, **2008**

³⁹ G.M. Whitesides, J.P. Mathias, C.T. Seto, *Science* 254, 1312-1319, 1991

⁴⁰ M. Pinteala, V. Harabagiu, Polisiloxani si materiale modificate cu polisiloxani, *Ed. Politehnium*, Iasi, **2006**

⁴¹ G.D. Moeser, W.H. Green, P.E. Laibinis, P.Linse, T.A. Hatton, *Langmuir* 20, 5223-5234,2004

⁴² K.S. Wilson, L.A. Harris, J.D. Goff, J.S. Riffle, J.P. Dailey, *European Cell and Materials* 3, 206-209, **2002**

⁴³ L. Pricop, <u>A. Durdureanu-Angheluta</u>, M. Spulber, I. Stoica, A. Fifere, N.L. Marangoci,
A.I. Dascalu, R. Tigoianu, V. Harabagiu, M. Pinteala, B.C. Simionescu, *e-Polymers* 093,
2010

⁴⁴<u>A. Durdureanu-Angheluta</u>, L. Pricop, M. Pinteala, R. Tigoianu, I. Stoica, A. Dascalu, V. Harabagiu, B.C. Simionescu, Micellization in amphiphilic siloxane/ α -carboxyester-poly(ethylene oxide) graft copolymers solutions. Applications, Frontiers in Macromolecular

and Supramolecular Science Second Cristofor I. Simionescu Symposium, Iasi, Romania, 02-03.06.2009

⁴⁵ <u>A.Durdureanu-Angheluta</u>, M. Pinteala, L. Pricop, I. Stoica, V. Harabagiu, B.C. Simionescu, "Magnetite particles functionalized with an COOH-siloxane", ESF-UB Conference in Biomedicine Nanomedicine 2008, San Feliu de Guixols, Spania, 19-24 septembrie 2008

⁴⁶<u>A. Durdureanu-Angheluta</u>, L. Pricop, M. Pinteala, V. Harabagiu, B.C. Simionescu, Particule magnetiques "core-shell" obtenu par polysiloxanes greffe avec carboxyliques groups, IXème Colloque Franco - Roumain sur les Polymères Synthese et proprietes des polymeres; les polymeres et l'environnement, Alba Iulia, Roumanie 27 – 29 Août 2009

⁴⁷J. Zhu, Z. Ren, G. Zhang, X. Guo, D. Ma, *Spectrochimica Acta Part A* 63, 449–453, 2006
⁴⁸H. Karami, *J. Clust. Sci.* 21, 11–20, 2010

⁴⁹ M. Klokkenburg, J. Hilhorst, B.H. Erne, *Vibrational Spectroscopy* 43, 243-248, **2007**

⁵⁰ T. Kikuchi, R. Kasuya, S. Endo, A. Nakamura, T. Takai, N. Metzler-Nolte, K. Tohji, J. Balachandran, *J. Magn. Magn. Mater.* 323, 10, 1216-1222, **2011**

⁵¹D. Rosu, N. Tudorachi, L. Rosu, J. Anal. App. Pyrolysis 89, 152–158, 2010