UNIVERSITATEA TEHNICĂ "GHEORGHE ASACHI " DIN IAȘI RECTORATUL

Către

......

Vă facem cunoscut că în ziua de la ora în va avea loc susținerea publică a tezei de doctorat intitulată

Studiul absorbției dioxidului de carbon în noi soluții de amine

elaborată de inginer TATARU- FARMUȘ Ramona - Elena, în vederea conferirii titlului științific de doctor.

Comisia de doctorat este alcătuită din:

1.	Prof. univ. dr. ing. Ioan Mămăligă	- președinte
	Universitatea Tehnică "Gheorghe Asachi " din Iași	
2.	Prof. univ. dr. ing. Ilie Siminiceanu	- conducător științific
	Universitatea Tehnică "Gheorghe Asachi " din Iași	
3.	Prof. univ. dr. ing. Laurențiu Filipescu	- membru
	Universitatea Politehnică din București	
4.	Prof. univ. dr. Mircea Palamaru	- membru
	Universitatea "Al. I. Cuza" din Iași	
5.	Prof. univ. dr. ing. Marcel Ionel Popa	- membru
	Universitatea Tehnică "Gheorghe Asachi " din Iași	

Vă trimitem rezumatul tezei de doctorat cu rugămintea de a ne comunica, în scris, aprecierile dumneavoastră.

Cu această ocazie vă invităm să participați la susținerea publică a tezei de doctorat.

Secretar,

ing. Cristina NAGÎŢ

Introducere	5
Partea I. Stadiul actual	8
Capitolul 1. Captarea CO ₂ din gazele reziduale	9
1.1. Problematica poluării cu CO ₂	10
1.1.1. Proprietățile CO ₂	10
1.1.2. Efectul de seră	
1.1.3. Surse de CO_2	15
1.1.4. Legislația privind poluarea cu CO ₂	16
1.2. Metode și procedee de captare a CO ₂	17
1.3. Absorbția chimică a CO ₂	
1.3.1. Absorbția în soluții de carbonat de potasiu	26
1.3.2. Absorbția în soluții de amoniac	
1.3.3. Absorbția în soluții de amine	
1.4. Noi sisteme de absorbție	
1.4.1. Lichide ionice	
1.4.2. Amine împiedicate steric	36
1.5. Sinteza lucrărilor citate	36
1.6. Concluzii	
Partea a II-a. Cercetări experimentale proprii	
Capitolul 2. Determinarea si corelarea unor proprietăți de transport ale solu	uțiilor de amine
studiate	40
2.1. Protocol experimental	
2. 1.1. Materiale	
2. 1.2. Metoda determinării densității	47
2. 1.3. Metoda determinării viscozității	49
2.2. Determinarea densității soluțiilor de amine	
2. 2.1. Soluții de etilendiamină	

TABLA DE MATERII

2. 2.2. Soluții de trietilentetramină	51
2. 2.3. Soluții de N, N'-bis (3- aminopropil) etilendiamină	51
2. 2.4. Corelarea matematică	53
2. 2.5. Concluzii	57
2.3. Determinarea viscozității soluțiilor de amine	
2. 3.1. Soluții de etilendiamină	59
2. 3.2. Soluții de trietilentetramină	61
2. 3.3. Soluții de N, N'-bis (3- aminopropil) etilendiamină	62
2. 3.4. Corelarea matematică	63
2. 3.5. Concluzii	67
2.4. Coeficientul de difuzie	70
Capitolul 3. Studiul cineticii absorbtiei CO2 in solutii de noi amine	
3.1. Protocol experimental	73
3. 1.1. Instalație	73
3. 1.2. Materiale	
3. 1.3. Modul de lucru	
3.1.3.1. Prepararea soluției	77
3.1.3.2. Procedura experimentală	
3. 1.4. Program experimental	79
3.2. Rezultate și discuții	80
3. 2.1. Sistemul CO ₂ -EDA-H ₂ O	80
3. 2.2. Sistemul CO ₂ -TETA-H ₂ O	
3. 2.3. Sistemul CO ₂ -APEDA-H ₂ O	90
3.3. Determinarea constantei de viteza pe baza datelor experimentale primare	
3. 3.1. Metoda	
3. 3.2. Sistemul CO ₂ -EDA-H ₂ O	
3. 3.3. Sistemul CO ₂ -TETA-H ₂ O	
3. 3.4. Sistemul CO ₂ -APEDA-H ₂ O	
3. 3.5. Discuții	
3.4. Determinarea energiei de activare	
3. 4.1. Sistemul CO ₂ -EDA-H ₂ O	
3. 4.2. Sistemul CO ₂ -TETA-H ₂ O	110
3. 4.3. Sistemul CO ₂ -APEDA-H ₂ O	

3	5. Concluzii11	8
Capitol	ıl 4. Concluzii generale 11	9
	Notații si indici12	3
	Bibliografie12	:5
A	nexe – Rezultate experimentale	
	1. Determinarea densității soluțiilor de amine studiate14	2
	2. Determinarea viscozității soluțiilor de amine studiate	1
	3. Absorbția CO ₂ în soluțiile aminelor17	4
A	tivitatea științifică în cadrul tezei de doctorat20	1

INTRODUCERE

Publicațiile recente estimează că dioxidul de carbon din atmosferă contribuie cu 76% la încălzirea globală, fiind urmat de metan cu 12% și protoxidul de azot cu 11%. De aceea, în ultimul deceniu, captarea CO_2 din gazele de ardere a devenit o temă centrală a cercetărilor de inginerie chimică.

Captarea prin absorbție în lichide este unanim acceptată ca cea mai adecvată metodă a acestui scop. Competiția între absorbția fizică și cea chimică nu a stabilit încă un învingător detașat. Solvenții fizici se regenerează mai ușor, nu sunt corozivi, dar necesită presiuni mari. Absorbția chimică necesită mai multă energie la regenerarea solventului, dar se poate aplica și la presiuni joase. În plus, reacțiile din faza lichidă accelerează transferul de masă și măresc selectivitatea. În această lucrare s-a optat pentru absorbția chimică.

Obiectivele studiilor efectuate în cadrul prezentei teze de doctorat au fost:

- 1. Studiul literaturii recente privind captarea CO₂ din gazele reziduale post combustie;
- Alegerea unor noi amine care, după structură şi proprietăți fizico-chimice sunt potențiali absorbanți chimici pentru CO₂ din gazele de ardere;
- Determinarea principalelor proprietăți ale aminelor selectate care intervin în criteriile de transport de masă (densitate, viscozitate, difuzivitate);
- Studiul cineticii absorbției CO₂ în fiecare din soluțiile celor trei amine, la diferite temperaturi şi grade de încărcare, într-o instalație de laborator cu absorber tip celulă Lewis;
- 5. Determinarea constantei globale de viteză, de ordinul I pentru sistemele studiate și identificarea parametrilor Arrhenius.
- 6. Stabilirea unei ierarhii a noilor solvenți, funcție de parametri cinetici.

Lucrarea este structurată în două părți și patru capitole. Partea I, *Stadiul actual*, este un studiu al literaturii recente asupra captării CO_2 din gazele reziduale în vederea reducerii emisiilor și a efectului antropogen de seră. Dioxidul de carbon din atmosferă contribuie cu 33,3 % la efectul natural (benefic) de seră și cu 70 - 80 % la efectul antropogen, evaluat printr-o creștere a temperaturii la suprafața Pământului cu 0,3 - 0,6 ^{0}C în ultimul secol. Această încălzire este atribuită în proporție de 70 - 80 %, creșterii concentrației CO_2 în atmosferă de la 300 ppmv în 1950 la 375 ppmv în 2010 (figura 1.3.). Deși această teorie nu este unanim acceptată, forurile internaționale, începând cu Protocolul de la Kyoto, au convenit că reducerea emisiilor de CO_2

este o cale înțeleaptă de prevenire a unor modificări dramatice ale climatului în următoarele decenii.

Eforturile de captare a CO_2 trebuie concentrate asupra gazelor de ardere a combustibililor fosili (cărbune, gaz natural, petrol) în centralele electrotermice. Gazele rezultate conțin, în funcție de combustibil, între 13 - 15 % vol. CO_2 și au debite foarte mari. Analiza comparativă a metodelor de separare a CO_2 din asemenea gaze duce la concluzia că absorbția chimică este cea mai eficientă. Metoda se poate concretiza în numeroase procedee, în funcție de solventul chimic aplicat. În prezent, sunt în competiție trei variante tehnologice: absorbția în soluții activate de carbonat de potasiu, absorbția în soluții de amoniac, absorbția în soluții de amine.

Dintre procedeele cu amine, absorbția în soluții apoase cu 20 % monoetanolamină (MEA) este considerat procesul etalon, la care se raportează performanțele noilor sisteme propuse. Dintre noile sisteme, cercetate în ultimul timp, se discută absorbția în lichide ionice și absorbția chimică în noi amine (primare, secundare, terțiare, poliamine, împiedicate steric, ș.a.).

Cercetările proprii prezentate în această lucrare se referă la absorbția CO_2 în soluțiile a trei amine care nu au mai fost ulterior folosite în acest scop: EDA (etilendiamina), TETA (trietilentetramina), APEDA (N, N[']-bis (3- aminopropil)etilendiamina).

Partea a II-a, *Contribuții proprii* are 3 capitole. În *Capitolul 2* se prezintă rezultatele asupra determinării și corelării principalelor proprietăți de transport (densitatea, viscozitatea) ale celor 3 amine, pentru diferite concentrații și temperaturi.

Densitatea a fost corelată cu o ecuație polinomială de gradul 2 în funcție de T. Coeficienții *a, b, c* sunt prezentați funcție de concentrație, pentru fiecare amină. Eroarea nu a depășit 2 %.

Viscozitatea a fost corelată cu o ecuație mai completă decât cele folosite anterior la lichide similare (Falkenhagen, Jones – Dole). Erorile nu depășesc 5 %. Rezultatele complete (tabele, grafice) sunt prezentate în anexele 1 și 2 ale lucrării de față.

Capitolul 3, Studiul cineticii absorbției CO_2 *în soluții de noi amine*, prezintă protocolul experimental, rezultatele primare (curbe cinetice), identificarea constantei de viteză și a energiei de activare pentru fiecare din cele trei amine studiate. Datele experimentale primare s-au obținut cu instalația de laborator de la Școala Superioară de Mine din Paris, în cadrul unui stagiu de cercetare finanțat prin Programul Socrates- Erasmus.

Instalația include un reactor de absorbție de tip "celulă Lewis" operat în regim discontinuu, cu agitare. Aria suprafeței de contact între faze este geometric definită și constantă. Influența transportului CO_2 prin film este eliminată prin agitarea intensă a fazelor. În plus, transportul prin gaz dispare, deoarece se absoarbe CO_2 pur.

Evoluția cantității de CO_2 absorbit este monitorizată prin înregistrarea presiunii, măsurată cu un sistem original, care include un senzor piezoelectric. Temperatura este menținută

constantă. Pentru fiecare sistem s-au făcut determinări la trei temperaturi (298, 313, 333 K) și diverse grade de încărcare (α), cuprinse între 0,03 și 0,53 mol CO₂ / mol amină.

Pentru identificarea constatei de viteză globală de ordinul I s-a stabilit un model matematic în ipoteza că absorbția atinge regimul cinetic "reacție rapidă", în care factorul de accelerare (E) este egal cu criteriul Hatta (Ha >3,0).

Pentru determinarea coeficientul de transfer k_1^0 inclus în criteriul Ha s-au folosit o ecuație criterială și proprietățile de transport măsurate (capitolul 2). În paragraful 3.4. se prezintă valorile parametrilor Arrhenius ai constantei de viteză pentru fiecare sistem amină – CO₂, la diferite grade de încărcare. Valorile energiei de activare confirmă validitatea ipotezei inițiale (Ha > 3,0) privind regimul cinetic. Valorile constantei de viteză dovedesc faptul că aminele investigate asigură o viteză de absorbție superioară aminelor convenționale. La o temperatură moderată, de 333 K, pentru α =0,5 mol CO₂ / mol amină, constanta de viteză este 4,8·10⁴ s⁻¹ la APEDA, 2,4·10⁴ s⁻¹ la TETA și 1,3·10⁴ s⁻¹ la EDA.

Capitolul 4 prezintă *Concluziile generale* ale lucrării. Acestea dovedesc faptul că obiectivele propuse au fost îndeplinite. Lucrarea se încheie cu Notații, Bibliografie, Anexe și Lucrările proprii publicate.

PARTEA a II-a . CERCETĂRI EXPERIMENTALE PROPRII

Capitolul 2. Determinarea și corelarea unor proprietăți de transport ale soluțiilor de amine studiate

Prealabil determinărilor experimentale specifice procesului de absorbție trebuie cunoscut ansamblul proprietăților fizice implicate în calculul parametrilor cinetici: viscozitatea (η) și densitatea soluției (ρ), coeficientul de difuzie al CO₂ în soluția de amină (D_{CO_2}), ca de altfel și constanta Henry pentru CO₂ în soluția de amină (H_{CO_2}).

In figura 2.1 se prezintă utilizarea acestor proprietăți în calculul parametrilor absorbției dioxidului de carbon în soluții de amine.

Cunoașterea densității solventului este necesară pentru calculul volumului fazei lichide (V_1) . Cunoscând volumul celulei Lewis (V_{cel}) , se va putea determina volumul fazei gazoase (V_g) care va fi utilizat în calculul constantei vitezei de absorbție. Viscozitatea și coeficientul de difuzie $(D_{CO_2/a\min \check{a}})$ sunt utilizați la calculul coeficientului parțial de transfer de masă, prin intermediul criteriilor Re, Sc și Sh. Constanta Henry intervine în ecuația care definește

coeficientul de transfer global de masă. În plus, ecuația lui Henry servește la trasarea curbei de echilibru necesară la dimensionarea aparatelor de absorbție.

Figura 2.1. Utilizarea proprietăților de transport în studiul absorbției CO₂

2.1. Protocol experimental

2.1.1. Materiale

Determinările experimentale s-au efectuat utilizând soluțiile a trei amine diferite. Alegerea acestor amine se justifică prin numărul grupărilor amino.

Etilendiamina (EDA): CAS 107-15-3. Este o diamină primară, cu puritatea de 99 %, furnizată de Sigma – Aldrich.

Trietilentetramina (TETA): CAS 112-24-3. Este o tetraamină cu 2 grupe primare și 2 grupe secundare, achiziționată de la Alfa Aesar.

N, N'-bis (3- aminopropil) etilendiamina (APEDA): CAS 10563-26-5. Este o tetramină cu grupe primare şi secundare şi un lanţ alifatic prelungit, furnizată de Laboratoarele Acros,cu o puritate certificată de 96,5 %.

2.1.2. Metoda determinării densității

Aparatul utilizat este un densimetru cu **tub de sticlă vibrant DMA 5000 Anton Paar** (figura 2.2). Tubul de sticlă este în formă de U, deci intrarea și ieșirea sunt încastrate în aparat și nu se pot deplasa. Înconjurând acest U, 2 convertoare magneto-dinamice excită tubul prin vibrare. Excitarea este reglată în așa fel ca regimul de vibrare să fie armonic neamortizat. Astfel, un impuls este furnizat de unul din aceste convertoare, răspunsul durează cât prezența lichidului în tub și, neașteptat, acest impuls este compensat după analiză de al doilea convertor, de maniera de a instaura o deplasare transversală constantă în regim permanent, apoi de a întreține această mișcare.

Figura 2.2. Densimetru cu tub vibrant Anton Paar DMA 5000

2.1.3. Metoda determinării viscozității

Viscozitatea s-a determinat cu un viscozimetru **Ubbelohde cu capilar**. Calibrarea viscozimetrului s-a bazat pe valorile apei și pe metodele standard acceptate de ASTM. Pentru fiecare determinare temperatura a fost controlată cu precizie \pm 0,1 K utilizând Viscosimetre Thermostat 655.

Un cronometru cu precizia $\pm 0,05$ a fost folosit pentru a măsura timpul de eflux pentru lichid. Timpul de eflux pentru fiecare probă a fost măsurat de 12 ori. Precizia determinărilor este $\pm 1,00$ %.

2.2. Determinarea experimentală a densității

Solvenții studiați sunt amestecuri amină – apă, de diferite compoziții. S-a hotărât limitarea concentrației aminei la 50 % din motive de risc de coroziune. O soluție prea concentrată în amină ar limita cu siguranță utilizarea amestecului în procesul de tratare a gazului.

Densitățile acestor amestecuri au fost determinate la presiune atmosferică, în intervalul de temperatură cuprins între 293 K și 343 K.

Figura 2. 4. Variația densității soluțiilor de trietilentetramină cu temperatura

Figura 2. 5. Reprezentarea grafică a dependenței $\rho = f(T)$ pentru soluțiile de N, N²-bis (3- aminopropil)etilendiamină

2.2.4. Corelarea matematică

Densitatea soluțiilor apoase de amină s-a corelat printr-o ecuație polinomială de tipul:

$$\rho = a + b \cdot T + c \cdot T^2 \tag{2.2}$$

pentru temperaturi cuprinse între 293 K și 343 K și fracții masice între 10 și 50%.

În tabelele 2.5 – 2.7 sunt centralizate valorile experimentale ale densității și valorile calculate cu relația (2.2), pentru soluțiile de amine de concentrație 50 %. În figurile 2.6- 2.8 se prezintă dependența densității cu temperatura – valori experimentale și valori calculate. In **Anexa 1** sunt prezentate rezultatele complete obținute la determinarea experimentală a densității soluțiilor de etilendiamină, trietilentetramină și N, N²-bis (3- aminopropil)etilendiamină.

Coeficienții *a*, *b*, *c* din relația (2.2) pentru soluțiile de EDA, TETA, APEDA sunt prezentați în tabelele 2.8.-2.10.

EDA 50%								
Т, К	$\rho_{exp}, kg/m^3$	$\rho_{calc,} kg/m^3$	%ع					
293,00	998,757	995,740	0,302					
297,99	994,964	991,841	0,314					
302,99	991,107	987,882	0,325					
307,99	987,201	983,867	0,338					
312,99	983,242	979,797	0,350					
317,99	979,231	975,673	0,363					
322,99	975,169	971,495	0,377					
327,99	971,052	967,261	0,390					
332,99	966,880	962,968	0,405					
337,99	962,652	958,626	0,418					
342,99	958,368	954,224	0,432					

Tabelul 2.5. Centralizarea valorilor densității soluției EDA 50%

Tabelul 2.6. Centralizarea valorilor densității soluției TETA 50%

	TETA 50%									
Т, К	$\rho_{exp}, kg/m3$	$\rho_{calc}, kg/m3$	8%							
293,00	1044,855	1043,767	0,104							
297,99	1041,413	1040,263	0,110							
302,99	1037,877	1036,692	0,114							
307,99	1034,278	1033,055	0,118							
312,99	1030,612	1029,352	0,122							
317,99	1026,883	1025,583	0,127							
322,99	1023,089	1021,753	0,131							
327,99	1019,238	1017,856	0,136							
332,99	1015,324	1013,893	0,141							
337,99	1011,340	1009,864	0,146							
342,99	1007,293	1005,772	0,151							

Т, К	$\rho_{exp}, kg/m3$	$\rho_{calc}, kg/m3$	%ع
293,00	1028,223	1029,700	-0,144
297,99	1024,508	1026,035	-0,149
302,99	1020,736	1022,319	-0,155
307,99	1016,918	1018,555	-0,161
312,99	1013,056	1014,749	-0,167
317,99	1009,150	1010,896	-0,173
322,99	1005,198	1007,000	-0,179
327,99	1001,198	1003,058	-0,186
332,99	997,157	999,0714	-0,192
337,99	993,066	995,0395	-0,199
342,99	988,920	990,9617	-0,206

Tabelul 2.7. Centralizarea valorilor densității soluției APEDA 50%

2.2.5. Concluzii

S-au determinat densitățile soluțiilor apoase de EDA, TETA și APEDA la 11 temperaturi, cuprinse între 293 K și 343 K, și 6 concentrații, cuprinse între 0 și 50 %. S-a folosit un densimetru Anton Paar DMA 5000 de înaltă precizie. Valorile au fost corelate cu o relație de tipul:

$$\rho = a + b \cdot T + c \cdot T^2 \tag{2.2}$$

în care coeficienții a, b, c depind de amină și de concentrație. Valorile tabelate ale coeficienților verifică punctele experimentale cu abateri mai mici de 2 %.

Pentru toate soluțiile studiate se observă că densitatea scade cu creșterea temperaturii (figura 2.9).

Figura 2.9. Variația densității soluțiilor de EDA, TETA și APEDA 50% în intervalul de temperatură 293-343 K

2.3. Determinarea viscozității

Determinările experimentale ale viscozității s-au realizat pentru un domeniu de variație al concentrației cuprins între 0 și 20 %. Pentru a converti concentrația masică în concentrație molară s-au folosit densitățile obținute experimental.

Rezultatele experimentale obținute la determinarea viscozității sunt prezentate în tabelele 2.11.-2.13. sub forma **viscozității reduse Y=** η/η_o pentru diferite concentrații molare. Viscozitatea redusă *Y* creste continuu cu creșterea concentrației (figura 2.10), dar scade cu creșterea temperaturii (figura 2.11) pentru fiecare sistem.

2.3.1.	Rezultate	experimentale	pentru	solutiile	de	etilendiamină
			P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•••••••

Т, К		293		303		313		323		333
Concentrația,	C,	Y								
%	mol/L	1	mol/L	I	mol/L	1	mol/L	1	mol/L	1
0	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000
5	0,830	1,103	0,827	1,095	0,824	1,082	0,820	1,078	0,816	1,048
10	1,660	1,300	1,654	1,280	1,647	1,241	1,640	1,195	1,631	1,124
15	2,484	1,488	2,476	1,428	2,466	1,382	2,455	1,318	2,442	1,228
20	3,313	2,316	3,299	2,096	3,284	1,929	3,266	1,584	3,247	1,414

Tabelul 2.11. Dependenta Y = f(C,T) pentru soluțiile de EDA

2.3.2. Rezultate experimentale pentru soluțiile de trietilentetramina

Т, К 293		303		313		323		333		
Concentrația	C,	v								
%	mol/L	1	mol/L	1	mol/L	1	mol/L	1	mol/L	Ĩ
0	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000
5	0,342	1,135	0,341	1,116	0,340	1,100	0,338	1,078	0,336	1,055
10	0,685	1,438	0,683	1,420	0,680	1,324	0,677	1,273	0,673	1,207
15	1,036	1,819	1,032	1,760	1,028	1,688	1,024	1,649	1,018	1,386
20	1,387	2,442	1,382	2,238	1,376	2,000	1,370	1,825	1,362	1,614

Tabelul 2.12. Dependenta Y = f(C,T) pentru solutiile TETA

2.3.3. Rezultate experimentale pentru soluțiile de N, N[']-bis (3- aminopropil) etilendiamina

Т, К 293		303		313		323		333		
Concentrația,	C,	v								
%	mol/L	1	mol/L	1	mol/L	1	mol/L		mol/L	1
0	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000	0,000	1,000
5	0,287	1,155	0,286	1,140	0,285	1,129	0,284	1,110	0,282	1,048
10	0,575	1,461	0,573	1,372	0,571	1,350	0,568	1,299	0,565	1,241
15	0,864	2,150	0,861	1,979	0,858	1,806	0,854	1,597	0,849	1,476
20	1,156	2,653	1,152	2,446	1,146	2,259	1,140	1,968	1,134	1,800

2.3.4. Corelarea matematică

O ecuație polinomială empirică a fost confruntată cu datele experimentale:

$$Y = \eta/\eta_o = 1 + a C + b C^2 + d C^3$$
(2.7)

Coeficientii *a*, *b*, *d* ai ecuației au fost identificați pentru fiecare sistem si pentru fiecare temperatură.

Valorile optimizate ale coeficienților *a*, *b* si *d* ai ecuației (2.7) sunt tabelate (tabelul 2.14). Valorile experimentale ale viscozității au fost apoi comparate cu cele calculate (figurile 2.12 - 2.14).

	EDA		ТЕТА			APEDA			
Temperatura	a,	b,	d,	a,	b,	d,	a,	b,	d,
К	L/mol	$(L/mol)^2$	$(L/mol)^3$	L/mol	$(L/mol)^2$	$(L/mol)^3$	L/mol	$(L/mol)^2$	$(L/mol)^3$
293	0,321	-0,240	0,079	0,303	0,347	0,154	-0,364	2,936	-1,166
303	0,278	-0,192	0,063	0,156	0,709	-0,111	-0,249	2,256	-0,792
313	0,220	-0,142	0,049	-0,075	1,112	-0,374	0,027	1,325	-0,311
323	0,126	-0,035	0,016	-0,314	1,617	-0,687	0,207	0,599	-0,009
333	0,063	-0,008	0,009	0,037	0,463	-0,109	-0,037	0,912	-0,209

Tabelul 2.14. Coeficienții a, b, d din ecuația $Y=1 + a C + b C^2 + d C^3$ la diferite temperaturi, pentru aminele studiate

2.3.5. Concluzii

Valorile identificate ale coeficienților *a*, *b*, *d* verifică punctele experimentale cu abateri care nu depăşesc 5 %. (tabelul 2.15). Pentru toate sistemele, viscozitatea crește cu concentrația și scade cu temperatura (figurile $2.15 \div 2.17$).

Figura 2.15. Variația viscozității reduse pentru sistemul EDA-H₂O.

Figura 2.16. Variația viscozității reduse pentru sistemul TETA- H₂O

Figura 2.17. Variația viscozității reduse pentru sistemul APEDA- H₂O

		Temperatura, K				
Amina	Concentrația, %	293	303	313	323	333
	5	-3,948	-3,614	-2,743	-0,924	-0,271
EDA	10	5,049	4,669	3,675	1,234	0,436
	15	-2,997	-2,812	-2,180	-0,737	-0,298
	20	0,479	0,502	0,433	0,191	0,042
	5	-1,297	-1,302	1,119	2,433	-0,485
ТЕТА	10	1,540	1,543	-1,404	-3,059	0,641
12111	15	-0,814	-0,834	0,738	1,634	-0,372
	20	0,152	0,165	-0,157	-0,322	0,086
	5	4,014	4,044	1,952	0,361	-0,823
APEDA	10	-4,793	-5,081	-2,472	-0,468	1,053
	15	2,187	2,367	1,243	0,256	-0,597
	20	-0,446	-0,483	-0,251	-0,052	0,124

Tabelul 2.15. Erorile relative

Capitolul 3. Studiul cineticii absorbției CO₂ în soluții de noi amine

Pentru determinările experimentale s-a optat pentru un reactor tip celulă Lewis (figura 3.1). Acest tip de reactor prezintă următoarele avantaje:

- ➤ aria suprafeței de contact gaz lichid este definită și constantă;
- > omogenizarea compoziției fazei lichide se realizează prin agitare;
- reactorul de tip Lewis poate fi utilizat pentru măsuri de absorbție și pentru desorbție;
- fluxul de masă transferat este obținut printr-o metodă simplă și rapidă, plecând de la urmărirea evoluției presiunii în timp.

3.1.4. Program experimental

Experiențele de absorbție a CO_2 în noile soluții de amine s-au realizat la temperaturi de 298 K, 313 K, respectiv 333 K. Gradul de încărcare α variază între 0 și 0,5 mol CO_2 / mol amină. Concentrația molară a soluțiilor de amine este aproximativ acceși, pentru a putea compara aminele. Viteza de agitare este constantă, 102 rot / min. Presiunea parțială a CO_2 utilizată pentru determinarea coeficientului de accelerație instantanee E_i a fost astfel aleasă încât regimul să fie de pseudo-ordin 1.

Figura 3.1. Celula Lewis utilizată pentru studiul absorbției CO₂ în soluții de amine

Figura 3.2. Schema de principiu a dispozitivului experimental AM- agitator magnetic; BG- butelie gaz; BTbaie termostatată; CP- captor presiune; E- elice; PD- pereți dubli; PV- pompă vid; RG- rezervă gaz; ST- sondă

3.2. Rezultate şi discuții3.2.1. Sistemul CO₂-EDA-H₂O

Reacția principală între CO₂ și EDA conduce la formarea unui zwitterion cu un singur carbon:

$$CO_2 + NH_2(CH_2)NH_2 \rightarrow {}^+H_3N(CH_2)_2NHCOO^-$$
 (3.1)

Deprotonarea acestui zwitterion are loc cu formarea monocarbamatului:

$$^{+}H_{3}N(CH_{2})_{2}NHCOO^{-} + H_{2}O \rightarrow H_{2}N(CH_{2})_{2}NHCOO^{-} + H_{3}O^{+}$$
 (3.2)

Valorile presiunii totale măsurate în timp, la cele 3 temperaturi și cele 6 valori ale gradului de încărcare a soluției cu CO₂, sunt prezentate în tabelele $3.3 \div 3.5$. Figurile $3.4 \div 3.9$ prezintă variația presiunii totale a sistemului pentru cele trei temperaturi la un grad de încărcare α .

Tabelul 3.3. Date experimentale primare obținute la absorbția CO₂ în soluții de EDA la 298 K

α , mol CO ₂ / mol EDA	T, K	C _{EDA} , mol / m ³	P _T , Pa	β
0,030			6336,165	3,59E-02
0,097 0,202	298		7547,539	3,34E-02
		1596,495	7477,508	2,98E-02
0,292			7808.611	2,68E-02
0,404			8092,082	2,10E-02
0,502			8394,616	1,76E-02

Tabelul 3.4. Date experimentale primare obținute la absorbția CO₂ în solutii de EDA la 313 K

α,	Τ,	C _{EDA} ,	P _T ,	ß		
mol CO ₂ / mol EDA	K	mol / m^3	Pa	μ		
0,025			11196,4677	4,15E-02		
0,105	313	1658,041	11109,9534	3,83E-02		
0,207			11138,7918	3,46E-02		
0,315			11663,0203	2,86E-02		
0,394			11734,3443	2,68E-02		
0,494			12665.1436	2,40E-02		

soluții de EDA în 5551							
α , mol CO ₂ / mol EDA	T, K	$C_{EDA},$ mol/m ³	P _T , Pa	β			
	11	moi/m	1 u				
0,058			22848,3358	4,63E-02			
0,125	333	1651,321	23389,9006	3,96E-02			
0,241			23662,8726	3,53E-02			
0,328			24018,0009	3,11E-02			
0,446			24167,3642	2,76E-02			
0,527			24624,9841	2,33E-02			

Tabelul 3.5. Date experimentale primare obținute la absorbția CO₂ în soluții de EDA la 333K

Figura 3.4. Variația presiunii în timp, în cursul absorbției CO_2 în soluții de EDA, la diferite temperaturi, pentru α =0÷0,05 mol CO_2 / mol EDA

3.2.2. Sistemul CO₂-TETA-H₂O

TETA este o tetramină ce poate reacționa în diferite moduri cu ceilalți constituenți. Pentru reacția cu dioxidul de carbon, ne-am bazat pe gradul de încărcare maxim teoretic posibil a se realiza. În cazul MEA, acest grad de încărcare este de 0,5 mol CO_2 / mol MEA. Teoretic, sunt necesari 2 moli de MEA pentru fixarea unui mol de CO_2 . Prin analogie, în cazul TETA, care are 4 funcții amino, este de așteptat un grad de încărcare teoretic de 2 mol CO_2 / mol TETA.

S-a considerat, de asemenea, ordin de reacție 1 pentru TETA.

$$CO_2 + \frac{1}{2}TETA \leftrightarrow \frac{1}{2}TETA(COO^-)_2 + H^+$$
 (3.3)

Valorile experimentale ale variației presiunii sistemului CO_2 -TETA-H₂O în timp, la diverse valori ale temperaturii și gradului de încărcare a soluției sunt redate în tabelele 3.6. \div 3.8.

in soluții de LETA la 298 K							
α,	Τ,	C _{TETA} ,	P _T ,	ß			
mol CO ₂ / mol TETA	K	mol / m^3	Pa	þ			
0,013			4683,7810	3,74E-02			
0,095	298		5214,6602	3,00E-02			
0,178		1404,105	5002,2565	2,97E-02			
0,278			4846,4934	2,68E-02			
0,380			5113,7355	2,43E-02			
0,460			5093,9124	2,16E-02			

Tabelul 3.6. Date experimentale primare obținute la absorbția CO₂ în solutii de TETA la 298 K

Tabelul 3.7. Date experimentale primare obținute la absorbția CO₂ în soluții de TETA la 313 K

α , mol CO ₂ / mol TETA	T, K	C _{TETA} , mol / m ³	Р _т , Ра	β	
0,038			9048,5918	4,09E-02	
0,113			9465,4409	3,78E-02	
0,200	212	1205 458	9542,1692	3,13E-02	
0,311	515	1393,438	9287,0128	3,11E-02	
0,409			9173,4658	2,70E-02	
0,469			9296,5392	2,92E-02	

Tabelul 3.8. Date experimentale primare obținute la absorbția CO₂ în soluții de TETA la 333 K

		,		
α , mol CO ₂ / mol TETA	Т, К	$C_{\text{TETA}},$ mol / m ³	P _T , Pa	β
0,060			21847,8802	3,81E-02
0,135			23182,3384	3,76E-02
0,221	333	1381 226	22406,9485	3,04E-02
0,328		1381,220	22269,9496	3,01E-02
0,426			22257,3339	2,80E-02
0,494			23384,2325	2,36E-02

Figura 3.10. Variația presiunii în timp, în cursul absorbției CO_2 în soluții de TETA, la diferite temperaturi, pentru α =0÷0,05 mol CO_2 / mol TETA

3.2.3. Sistemul CO₂-APEDA-H₂O

Valorile presiunii totale măsurate în timpul absorbției sunt prezentate în tabelele $3.9 \div 3.11$. Gradul de încărcare a soluției de de N, N⁻-bis (3- aminopropil)etilendiamină cu dioxid de carbon este cuprins între 0– 0,5 mol CO₂ / mol APEDA, pentru fiecare din cele trei temperaturi (298 K, 313 K, 333 K). Variația presiunii totale a sistemului CO₂-APEDA-H₂O cu temperatura este prezentată în figurile 3.16 – 3. 21.

	în soluții u	CALDAIA 2	270IX	
α,	Τ,	C _{APEDA} ,	P _T ,	ß
mol CO ₂ / mol APEDA	K	mol / m^3	Pa	þ
0,012			7131,988	2,83E-02
0,070			7452,533	2,60E-02
0,180	208	1451 172	6867,571	2,50E-02
0,295	290	1431,172	6784,924	2,29E-02
0,382			6386,885	2,22E-02
0,484			5914,955	2,11E-02

Tabelul 3.9. Date experimentale primare obținute la absorbția CO₂ în solutii de APEDA la 298K

in soldji de Al EDA la 515 K							
α,	Τ,	C _{APEDA} ,	P _T ,	ß			
mol CO ₂ / mol APEDA	Κ	mol / m^3	Pa	р			
0,031	313		10526,24	4,03E-02			
0,087			10967,82	3,61E-02			
0,208		1420.017	10423,76	3,47E-02			
0,305		1439,917	10131,79	3,40E-02			
0,409			9867,617	3,01E-02			
0,508			9690,989	2,70E-02			

Tabelul 3.10. Date experimentale primare obținute la absorbția CO₂ în soluții de APEDA la 313 K

Tabelul 3.11. Date experimentale primare obținute la absorbția CO_2 în soluții de APEDA la 333 K

α, mol CO ₂ / mol APEDA	T, K	C _{APEDA} , mol / m ³	P _T , Pa	β
0,047	222		23493,17	4,15E-02
0,109		1424 075	23857,31	4,10E-02
0,222			23167,66	4,02E-02
0,330	555	1424,075	22983,79	3,33E-02
0,430			22563,26	2,89E-02
0,518			22109,78	2,62E-02

Figura 3.16. Variația presiunii în timp, în cursul absorbției CO_2 în soluții de APEDA, la diferite temperaturi, pentru α =0÷0,05 mol CO_2 / mol APEDA

3.3. Determinarea constantei de viteză pe baza datelor experimentale primare

3.3.1. Metoda

Datele primare experimentale obținute in decursul experiențelor de absorbție au fost interpretate pe baza teoriei proceselor chimice gaz - lichid [227].

Viteza absorbției chimice a CO₂ este de forma:

$$- dn_{CO2} / A_i dt = E k_L^0 C_{CO2}^e, mol / m^2 s$$
 (3.4)

Se presupune ca faza gazoasă este ideală $(p_{CO2}V_g = n_{CO2}RT)$, CO₂ este complet consumat de reacție în filmul de lichid. Concentrația CO₂ la interfață este dată de legea Henry ($C_{CO2}^e = p_{CO2}^e/H_{CO2}$).

Presiunea parțială a CO₂ este obținută prin scăderea presiunii de vapori a soluției (P_v) din presiunea totală măsurată (P_T) : $\Delta P = P_T - P_v$.

Integrând (3.4) în aceste condiții, se obține ecuația :

$$\ln (P_{\rm T} - P_{\rm v})_{\rm t} / (P_{\rm T} - P_{\rm v})_{\rm to} = -\beta (t - to)$$
(3.5)

unde:

$$\beta = E k_L^0 A_i R T / V_g H_{CO2}$$
(3.6)

Factorul de accelerare E poate fi calculat pentru fiecare experiment, utilizând ecuația (3.6).

Pentru a putea compara rezultatele obținute în această lucrare cu cele raportate în literatura de specialitate, la aceeași temperatură, constanta de viteză (k_{ov}) pentru o reacție de pseudo-ordin 1 a fost calculată pentru un regim de reacție rapid (E = Ha > 3):

$$k_{ov} = (k_L^0 E) / D_{CO2}$$
 (3.7)

Coeficientul de transfer de masă (k_L^0) a fost calculat cu o relație criterială stabilită de Amararene în 2004:

$$Sh = 0,352 \text{ Re}^{0,618} \text{ Sc}^{0,434}$$
(3.8)

unde criteriile adimensionale Sherwood (Sh), Reynolds (Re) si Schmidt (Sc) au fost definite după cum urmează:

$$Sh = \frac{k_{L}^{0}.D_{cel}}{D_{CO_{2}-a\min\check{a}}}; \qquad Re = \frac{\rho_{L}.N.D_{ag}^{2}}{\eta_{L}}; \qquad Sc = \frac{\eta_{L}}{\rho_{L}.D_{CO_{2}-a\min\check{a}}}$$
(3.9)

 D_{cel} - diametrul celulei Lewis, m; N – viteza de agitare a fazei lichide, rot/ s; $\eta_{\rm L}$ - viscozitatea fazei lichide, Pa ·s; $\rho_{\rm L}$ - densitatea fazei lichide, kg /m³; $D_{CO2-a\min\check{a}}$ - coeficientul de difuzie al CO₂ în soluția de amină.

Pentru calculul constantei de viteză a absorbției dioxidului de carbon în soluțiile aminelor studiate s-a apelat la prelucrarea datelor experimentale obținute în următoarele condiții:

- rezultatele experimentale obținute în urma studiului influenței temperaturii asupra vitezei de reacție, considerând gradul de încărcare a soluției constant;
- rezultatele experimentale obținute în urma studiului influenței gradului de încărcare a soluției cu CO₂ considerând temperatura sistemului constantă.

3.3.2. Sistemul CO₂-EDA-H₂O

Figura 3.22. Constanta de viteză a absorbției în soluție EDA în intervalul de temperatură 298 - 333 K, pentru $\alpha = 0 \div 0,5$ mol CO₂/mol EDA

3.3.3. Sistemul CO₂-TETA-H₂O

Figura 3.23. Constanta de viteză a absorbției în soluție TETA în intervalul de temperatură 298-333 K, pentru $\alpha = 0 \div 0.5 \text{ mol CO}_2 / \text{ mol TETA}$

3.3.4. Sistemul CO₂-APEDA-H₂O

Figura 3.24. Constanta de viteză a absorbției în soluție APEDA în intervalul de temperatură 298-333 K, pentru $\alpha = 0.05 \text{ mol CO}_2/\text{mol APEDA}$

3.3.5. Discuții

N,N'-Bis(3-Aminopropil)etilenediamina are constanta de viteză cea mai mare, urmată de trietilentetramina și de etilendiamina. Valorile vitezei de reacție sunt comparabile pentru TETA și APEDA, lucru care se explică prin numărul de grupări amino active.

Constanta de viteză scade cu creșterea gradului de încărcare a soluției cu dioxid de carbon (α) pentru fiecare din sistemele studiate (figura 3.25).

Figura 3.25. Constanta de viteză k_{ov}, determinată la 313 K, pentru cele 3 soluții de amine

3.4. Determinarea energiei de activare

Analizând datele existente în literatura de specialitate la vremea sa, Svante Arrhenius găsește următoarea relație empirică între constanta de viteză și temperatură:

$$k_{ov} = A \cdot e^{-\frac{B}{T}}$$
(3.18)

Logaritmând această relație se obține:

$$ln k_{\rm ov} = ln A - \frac{B}{T}$$
(3.19)

unde:

$$A = k_{ov}^0 \tag{3.20}$$

reprezintă factorul preexponențial. k_{ov} este constanta de viteză stabilită din condițiile experimentale, s⁻¹.

$$B = E_a / R \tag{3.21}$$

 E_a este energia de activare a reacției, kJ/mol, R – constanta universală a gazelor, kJ/mol·K, T- temperatura de lucru, K.

Pentru verificarea acestei dependențe s-au considerat rezultatele experimentale obținute în urma studiului influenței temperaturii asupra absorbției dioxidului de carbon în soluții de amine. Acest studiu s-a realizat pentru intervalul de temperatură cuprins între 298 - 333 K. Experimental s-a observat că, odată cu creșterea temperaturii crește si valoarea constantei de viteză a absorbției.

3.4.1. Sistemul CO₂-EDA-H₂O

Valoarea factorului preexponențial și a energiei de activare în cazul absorbției CO_2 în soluții de EDA se prezintă în tabelul 3. 21.

α , molCO-/molEDA	E	a	А	В
	cal/mol	kJ/mol		
0,00-0,05	2187,824	9,145	13,761	1101,1
0,05-0,10	1188,368	4,967	11,986	598,1
0,10-0,20	1246,036	5,208	11,373	517,0
0,20-0,30	1027,229	4,294	11,931	627,0
0,30-0,40	2364,912	9,885	13,309	1190,2
0,40-0,50	2439,218	10,196	13,221	1227,6

Tabelul 3.21. Parametri cinetici derivați din reprezentarea Arrhenius pentru absorbția CO_2 în soluții de EDA

3.4.2. Sistemul CO₂-TETA-H₂O

Datele experimentale obținute la absorbția dioxidului de carbon în soluții de trietilenteramină s-au prelucrat în coordonate specifice ecuației Arrhenius – forma logaritmată. În figurile 3.32 - 3.37 sunt prezentate dependențele $ln k_{ov} - \frac{1000}{T}$ corespunzătoare sistemului CO₂-TETA-H₂O.

Valoarea factorului preexponențial și a energiei de activare în cazul absorbției CO_2 în soluții de TETA se prezintă în tabelul 3. 22.

Figura 3.32. Reprezentarea grafică tip Arrhenius pentru α=0÷0,05 mol CO₂ /mol TETA

Tabelul 3.22. Parametri cinetici derivați din reprezentarea Arrhenius pentru absorbția CO_2 în soluții de TETA

a	Ea		٨	р
molCO ₂ /mol TETA	cal/mol	kJ/mol	A	D
0,00-0,05	2221,766	9,287	15,959	1610,2
0,05-0,10	4496,112	18,794	19,366	2750,5
0,10-0,20	2275,050	9,510	15,562	1638,3
0,20-0,30	3342,200	13,970	17,014	2117,7
0,30-0,40	3674,378	15,359	17,512	2342,1
0,40-0,50	2823,591	11,803	15,987	1421,0

3.4.3. Sistemul CO₂-APEDA-H₂O

Folosind metodica de prelucrare a datelor experimentale în coordonate specifice formei liniarizate a ecuației Arrhenius, în figurile 3.38 - 3.43 sunt prezentate dependențele $ln k_{ov} - \frac{1000}{T}$ corespunzătoare absorbției dioxidului de carbon în soluții de N, N'-bis (3aminopropil)etilendiamina, pe baza cărora se stabilesc valorile factorului preexponențial și a energiei de activare.

Figura 3.38. Reprezentarea grafică tip Arrhenius pentru α =0÷0,05 mol CO₂ /mol APEDA

Valorile energiei de activare și ale parametrilor ecuației Arhhenius calculați pentru soluția de APEDA, în intervalul de temperatură 298 – 333 K, pentru grade de încărcare cu dioxid de carbon cuprinse între 0,05 - 0,5 mol CO₂ mol APEDA sunt prezentate în tabelul 3.23.

α	Ea			
molCO2/mol			А	В
APEDA	cal/mol	kJ/mol		
0,00-0,05	9490,799	39,67154	26,160	4776,4
0,05-0,10	10349,72	43,26184	27,398	5208,7
0,10-0,20	10580,02	44,22448	27,702	5324,6
0,20-0,30	9356,616	39,11065	25,543	4708,9
0,30-0,40	8169,009	34,14646	23,442	4111,2
0,40-0,50	7677,446	32,09172	22,483	3863,8

Tabelul nr. 3.23. Parametri cinetici derivați din reprezentarea Arrhenius pentru absorbția CO₂ în soluții de APEDA

3.5. Concluzii

S-a studiat cinetica absorbției CO_2 în soluții apoase de amine, folosind un reactor de laborator tip celulă Lewis cu aria suprafeței de contact între faze de 15,34 \cdot 10⁻⁴ m². Faza lichidă în care are loc reacția aminei cu CO_2 dizolvat a fost omogenizată cu o turbină Rushton cu 6 palete. Instalația, aflată la Școala Superioară de Mine din Paris, a trebuit să fie adaptată sistemelor studiate.

Pentru fiecare sistem amină - apă s-au făcut determinări la trei temperaturi (298K, 313 K, 333K) și la grade de încărcare (α , mol CO₂ / mol amină) cuprinse între 0,03 și 0,53.

S-a stabilit un model matematic în ipoteza unui regim cinetic Ha>3, care permite identificarea constantei globale de viteză (k_{ov} , s⁻¹) din datele primare. Măsurătorile din capitolul 2 au fost folosite la determinarea coeficientului de transfer de masă prin faza lichidă (k_{1}^{0} , m/s), care intervine în criteriul Ha.

S-au obținut valorile constantei de viteză k_{ov} în funcție de temperatură și gradul de încărcare α pentru cele 3 sisteme studiate. La T=333 K și α = 0,5 mol CO₂ / mol amină, k_{ov} =4,8 10⁴ s⁻¹ pentru CO₂ – APEDA- H₂O, k_{ov} =2,4 10⁴ s⁻¹ pentru CO₂ – TETAA- H₂O și k_{ov} =1,3 10⁴ s⁻¹ pentru CO₂ – EDA- H₂O. La aceeași temperatură, constante este 2,2 10⁴ s⁻¹ [227] pentru CO₂ – MEA- H₂O, pentru α =0. Rezultatele experimentale prezentate pentru absorbția dioxidului de carbon în soluțiile celor trei amine a condus la concluzia că temperatura și gradul de încărcare a soluției influențează constanta vitezei de reacția. Aminele studiate în această lucrare, în special APEDA și TETA, sunt superioare MEA și din punct de vedere cinetic. Puține amine (doar PZ) depășesc MEA la viteză de absorbție.

S-au determinat valorile energiei de activare pentru fiecare sistem. Valorile găsite, alături de valorile factorului de accelerare (E>3) au confirmat ipoteza *regim reacție foarte rapidă*, care au stat la baza deducerii modelului.

Confirmarea experimentală a regimului cinetic *regim reacție foarte rapidă* pentru cele trei sisteme conduce și la o soluție practică în etapa de extrapolare a procesului la scară industrială. Considerăm că la scară mare, cel mai adecvat absorber este o coloană cu umplutură structurată. Aceasta are 2 mari avantaje față de coloana cu umplutură clasică: are o pierdere de presiune mai mică și o arie a suprafeței de transfer mult mai mare (> 750 m² / m³).

Capitolul 4. Concluzii generale

Concluziile care se desprind în urma cercetărilor de documentare și experimentale efectuate sunt următoarele:

1. În epoca industrială, temperatura medie la suprafața Pământului a crescut cu 0,3-0,6 ⁰C. Încălzirea globală, considerată cea mai importantă problemă de mediu cu care se confruntă omenirea în prezent, este atribuită efectului antropogen de seră produs de cele 4 gaze cu potențial ridicat de încălzire globală: CO₂, CH₄, N₂, SF₆. Dintre acestea, CO₂ contribuie cu 70-80 %, în condițiile în care concentrația CO₂ în atmosferă a crescut, datorită activității umane, de la 285 ppmv la 375 ppmv în anul 2010.

- 2. Protocolul de la Kyoto, semnat de 191 state, prevede reducerea emisiilor de gaze cu efect de seră (CO₂, CH₄, N₂, SF₆) cu 5,2 % în perioada 2008- 2012, față de 1990. Uniunea Europeană, din care face parte şi România, este al treilea generator de GES (cu 11 %), după China şi USA.
- 3. Tehnologiile actuale de captare a CO₂ din gaze reziduale de ardere, bazate pe absorbţia CO₂ în soluţii de monoetanol amină (MEA) necesită un cost total ce poate atinge 150 \$ / t CO₂ recuperat.
- 4. Sunt necesare noi sisteme de absorbție a CO_2 . În această lucrare se studiază absorbția CO_2 în soluțiile a 3 amine care nu au mai fost folosite în acest scop: etilendiamina, o diamină primară; trietilentetramina, o tetramină cu 2 grupe primare și 2 grupe secundare; aminopropiletilendiamina, o tetramină cu grupe primare și secundare și un lanț alifatic prelungit care poate avea efecte de împiedicare sterică.
- 5. S-a determinat densitatea soluțiilor apoase de EDA; TETA și APEDA la 11 temperaturi, cuprinse între 293 ÷ 343 K, și 6 concentrații, cuprinse între 0 ÷50 %.
 S-a folosit un densimetru Anton Paar DMA 5000 de înaltă precizie. Valorile au fost corelate cu o relație de tipul:

$$\rho = a + b \cdot T + c \cdot T^2 \tag{2.2}$$

în care coeficienții a, b, c depind de amină și de concentrație. Valorile tabelate ale coeficienților verifică punctele experimentale cu abateri mai mici de 2 %.

6. Viscozitatea soluțiilor celor 3 amine s-a măsurat cu un viscozimetru Ubbelhode termostatat la 5 temperaturi (293-333 K) și 5 concentrații cuprinse între 0 și 20,0 %. Valorile s-au corelat funcție de concentrația molară prin relația:

$$Y = \eta/\eta_o = 1 + a C + b C^2 + d C^3$$
(2.7)

Această relație a fost propusă după ce s-a constatat că relațiile propuse anterior pentru soluții de electroliți (Jiang și Sadler, 2003; Jones și Dole, 1929; Kaminsky, 1957) nu se verifică.

Valorile identificate ale coeficienților a, b, d verifică punctele experimentale cu abateri care nu depășesc 5,08 %. La toate sistemele, vâscozitatea crește cu concentrația și scade cu temperatura.

 Coeficientul de difuzie al CO₂ în aceste soluții se corelează cu ecuații tip Einstein, în funcție de viscozitate și difuzivitatea în apă pură.

- 8. S-a studiat cinetica absorbției CO₂ în soluții apoase de amine, folosind un reactor de laborator tip celulă Lewis cu aria suprafeței de contact între faze de 15,34 x 10⁻⁴ m². Faza lichidă în care are loc reacția aminei cu CO₂ dizolvat a fost omogenizată cu o turbină Rushton cu 6 palete.
- 9. Pentru fiecare sistem amină- apă s-au făcut determinări la trei temperaturi (298K, 313 K, 333K) şi la grade de încărcare (α, mol CO₂ /mol amină) cuprinse între 0,03 şi 0,53.
- 10. S-a stabilit un model matematic în ipoteza unui regim cinetic Ha>3, care permite identificarea constantei globale de viteză (k_{ov}, s⁻¹) din datele primare. Măsurătorile din capitolul 2 au fost folosite la determinarea coeficientului de transfer de masă prin faza lichidă (k⁰₁, m/s), care intervine în criteriul Ha.
- 11. S-au obținut valorile constantei de viteză k_{ov} în funcție de temperatură și gradul de încărcare α pentru cele 3 sisteme studiate. La T=333 K și α = 0,5 mol CO₂ / mol amină, k_{ov} =4,8[·] 10⁴ s⁻¹ pentru CO₂ – APEDA- H₂O, k_{ov} =2,4[·] 10⁴ s⁻¹ pentru CO₂ – TETA- H₂O și k_{ov} =1,3[·] 10⁴ s⁻¹ pentru CO₂ – EDA- H₂O. La aceeași temperatură, constanta este 2,2[·] 10⁴ s⁻¹ pentru CO₂ – MEA- H₂O, pentru α =0. Aminele studiate în această lucrare, în special APEDA și TETA, sunt superioare MEA și din punct de vedere cinetic. Puține amine (doar PZ) depășesc MEA la
- **12.** S-au determinat valorile energiei de activare pentru fiecare sistem. Valorile găsite, alături de valorile factorului de accelerare (E>3) au confirmat ipoteza *regim reacție foarte rapidă*, care au stat la baza deducerii modelului.

viteză de absorbție.

13. Confirmarea experimentală a regimului cinetic *regim reacție foarte rapidă* pentru cele trei sisteme conduce și la o soluție practică în etapa de extrapolare a procesului la scară industrială. Considerăm că la scară mare cel mai adecvat absorber este o coloană cu umplutură structurată. Aceasta are 2 mari avantaje față de coloana cu umplutură clasică: are o pierdere de presiune mai mică și o arie a suprafeței de transfer mult mai mare (> 750 m² / m³).

Alfabetul latin

a	Coeficient ecuație	-
А	Coeficient ecuație Arrhenius, definit conform 3.20.	-
Ai	Arie interfacială	m^2
b	Coeficient ecuație	-
В	Coeficient ecuație Arrhenius, definit conform 3.21.	
с	Coeficient ecuație	-
С	Concentrație molară a soluției de amină	mol / m^3
d	Coeficient ecuație	-
D _{co2}	Coeficient de difuzie	m^2 / s
D _{cel}	Diametrul celulei Lewis	m
D _{ag}	Diametrul agitatorului fazei lichide	m
E	Factor de accelerare	-
Ea	Energie de activare	kJ / mol
H _{CO2}	Constanta Henry	$Pa m^3 / mol$
k_L^0	Coeficient de transfer de masă faza lichidă	m/s
k _{ov}	Constantă de viteză	s^{-1}
Κ	Constantă de echilibru	-
Μ	Masă molară	g / mol
n	Număr de moli	mol
Ν	Viteza de agitare a fazei lichide	rot/ s
pi	Presiune parțială a componentului i	Ра
P	Presiune totală	Ра
r	Viteza de reacție	$mol / m^3 s$
R	Constanta universală a gazelor (= 8,314)	J / mol K
Re	Criteriul Reynolds	-
Sc	Criteriul Schmidt	-
Sh	Criteriul Sherwood	-
Т	Temperatura	Κ
V _L	Volumul fazei lichide în celulă	m ³
V _G	Volumul fazei gazoase în celulă	m ³
Y	Vâscozitate redusă, definită conform	-

Alfabetul grec

α	Grad de încărcare al soluției	mol CO ₂ / mol amină
3	Eroare relativă	-
η	Vâscozitatea soluției de amină	Pa s
μ	Tărie ionică	-
ρ	Densitatea soluției de amină	kg $/m^3$
τ	Timp	S

Compuşi

APEDA	N, N ['] -bis (3- aminopropil) etilendiamina
EDA	Etilendiamina
TETA	Trietilentetramina
MEA	Monoetanolamina

Indici

inițial
cu referire la soluția de amină
cu referire la APEDA
cu referire la CO ₂
cu referire la EDA
cu referire la H ₂ O
cu referire la faza lichidă
cu referire la TETA
total
vapori

BIBLIOGRAFIE SELECTIVĂ

- 1. Aboudheir A., Tontiwachwuthikul P., Chakma A., Idem R., 2003, Kinetics of reactive absorption of CO₂ in high loaded concentrated MEA solutions, *Chem.Eng.Sci.*, 58, 5195-5210.
- Alvarez- Fuster C., Midoux N., Laurent A., Charpentier J.-C., 1980, Chemical kinetics of the reaction of CO₂ with amines in pseudo- mth order conditions in aqueous and organic solutions, *Chem .Eng. Sci.*, 35, 1717-1723.
- 3. Alper E., Deckwer W.D., Danckwerts P.V., 1980, Comparison of effective interfacial areas with the actual contact aria for gas absorption in a stired cell, *Chem. Eng.*.
- 4. Amararene F., Bouallou C., 2004, Kinetics of Carbonyl Sulfide (COS) Absorption with Aqueous Solutions of Diethanolamine and Methyldiethanolamine, *Ind. Eng. Chem. Res.*, *43*, 6136-6141
- 5. Anderson Soren, Newell Richard, 2003, Prospects for carbon capture and storage technologies, Resources for the future, *Washington D.C.*, 1-67, <u>http://www.rff.org/documents/RFF-DP-02-68.pdf</u>
- Andrew S.P.S., 1954, A rapid method of measuring absorption rates and its application to CO₂ absorption into partially carbonated ammonia liquir, *Chem. Eng. Sci.*, 3, 279-286.
- Aroonwilas A., Tontiwachwuthikul P., 1997, Mass transfer studies of high performance structured packing for CO₂ separation processes, *Energy Conversion and Management*, 38, S75- S80.
- 8. Aroonwilas A., Tontiwachwuthikul P., Chakma A., 2001, Effects of operating and design parameters on CO₂ absorption in columns with structured packings, *Separation and Purification Technology*, 24, 403- 411.
- 9. Aroua M.K., Haji- Sulaiman M.Z., Ramasamy K., 2002, Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus, *Separation and Purification Technology*, 29, 153-162.

- 10. Baltoo R.K., 1984, Removing acid gas by the Benfield process, *Chem. Eng. Prog.*, 80, 35-40.
- 11. Bishnoi S., Rochelle T.G., 2000, Absorption of CO₂ into piperazine: reaction kinetics, mass transfer and solubility, *Chem. Eng. Sci.*, 55, 5531-5540.
- 12. Bishnoi S., Rochelle T.G., 2002, Absorption of carbon dioxide in aqueous piperazine/ methyldiethanolamine, *AIChE Journal*, 48, 2788-2799.
- Bonenfant D., Mimeault M., Hausler R., 2003, Determination of the Structural Features of Distinct Amines Important for the Absorption of CO2 and Regeneration in Aqueous Solution, *Ind. Eng. Chem. Res.*, 42, 3179 -3184
- Cadours R., Pani F., Bouallou C., Gaunand A., Richon D., 1997, Kinetics of absorption of carbon dioxide in highly concentrated and CO₂ loaded N-methyldiethanolamine aqueous solutions, *ELDATA : Int. Electron. J. Phys. Chem. Data*, Vol. 3, pp. 77-84, 1997
- Camacho F., Sanchez S., Pocheco R.,2000, Thermal effects during the absorption of CO₂ in aqueous solutions of 3-amino-1-propanol (AMP), *Chem. Eng. Technol.*, 23, 1073-1080.
- 16. Cents A.H.G., Brilman D.W.F., Versteeg G.F., 2001, Gas absorption in an agitated gasliquid system, *Chem. Eng. Sci.*, 56, 1075-1081
- 17. Chakma A., Lemonier J.P., Chornet E., Overend R.P., 1989, Absorbtion of CO₂ by aqueous TEA solutions in a high shear jet absorber, *Gas Separation and Purification*, 3, 65-71.
- Chenlo F., Moreira R., Pereira G., Vazquez M.-J., 2002: Coll. Czech. Chem. Commun., 67, p. 293- 301
- 19. Cordi E.M., Bullin J.A., 1992, Kinetics of CO₂ and Methyldiethanolamine with phosphoric acid, *A.I.Ch.E.Journal*, 38, 455-460.
- 20. Corti A., 2004, Thermoeconomic evaluation of CO₂ alkali absorption system applied to semi- closed gas turbine combined cycle, *Energy*, 29, 415-426.
- 21. Cullinane J.T., Rochelle G.T., 2005, Thermodynamics of aqueous potassium carbonate, piperazine and carbon dioxide, *Fluid Phase Equilibria*, 227, 197-213.
- 22. Danckwerts V.P., Sharma M.M., 1966, The absorption of carbon dioxide into solution of alkalis and amines, *The Chemical Engineer*, October, CE 244 –CE 280.
- 23. Danckwerts P.V., 1970, Gas-Liquid Reactions, McGraw-Hill, New York, 238-263.
- 24. Dang H., Rochelle G.T., 2001, CO₂ absorption rate and solubility in MEA- PZ- H₂O, *First Natinal Conference on Carbon Sequestration, Washington DC, May 14- 17, 2001, 1-17.*
- 25. Da Silva E.F., Svendsen H.F., 2007, Computational chemistry study of reactions, equilibrium and kinetics of chemical CO₂ absorption, *International Journal of Greenhouse Gas Control*, 1, 151-157.
- 26. Davis R.A., Sandall O.C., 1993, Kinetics of the reaction of carbon dioxide with secondary aminesin polyethylene glycol, *Chem. Eng. Sci.*, 48, 3187-3193.
- 27. Siminiceanu I., Drăgan M., 2000, A hydrodinamic study of a column packed with Mellapack 750Y structured package, *Rev. Chimie*, București, 151, 5, 376-381
- 28. De Haan A.B., 2007, Functionalized ionic liquids for CO₂ absorption, Eindhoven University of Technology, http://w3.wtb.tue.nl/uploads/media
- 29. Derks P.W.J., Kleingeld T., van Aken C., Hogendoorn J.A., Versteeg G.F., 2006, Kinetics of absorption of carbon dioxide in aqueous piperazine solutions, *Chem. Eng. Sci.*, *61*, 6837-6854.
- 30. Erga O., Juliussen O., Lidal H., 1995, Carbon dioxide recovery by means of aqueous amines, *Energy Conservation and Management*, *36*, *387-392*.
- 31. Froment G.F., Bischoff K.B., 1990, *Chemical Reactor Analysis and Design, Cap.6. Gasliquid reactions*, John Wiley, New York, 256-289
- Frenia S., Cavallaro S., Donato S., Chiodo V., Vita A., 2004, Experimental evaluation on the CO₂ separation process supported by polymeric membranes, *Materials Letters 58*, 1865–1872
- 33. Gonzalez-Garza D., Rivera-Tinoco R.., Bouallou C., 2009, Comparison of Ammonia, MonoEthanolAmine, DiEthanolAmine andMethylDiEthano

lAmine Solvents to Reduce CO2 Greenhouse Gas Emissions, Chemical Engineering Transitions, 18, 279-284

- Gupta M., Coyle I., Thambimuthu K., 2003, CO₂ capture technologies and opportunities in Canada, 1st Canadian CC&S Technology Roadmap Workshop, Calgary, Alberta, Canada, 18-19 Septembre
- 35. Hagewiesche P.D., Ashour S.S., Al-Gawas A.H., Sandall C.O., 1995, Absorption of CO₂ into aqueous blends of MEA and MDEA, *Chem. Eng. Sci.*, 50, 1071-1079.
- 36. Hampe E.M., Rudkevich D. M., 2003, Exploring reversible reaction between CO₂ and amines, Tetrahedron, 59, 9619-9625
- 37. Hikita H., Asai S., Ishikawa H., Honda M., 1977, The kinetics of reaction of CO₂ with MEA, DEA and TEA by a rapid mixing method, *Chem...Eng. Journal*, 13, 7-12.
- 38. Hoerner B., Abbenseth R., Bergbauer W., 1980, On the relationship between mass transfer and turbulence in gas absorption with chemical reaction, *Chem. Eng. Sci.*, 35, 232-238.
- 39. Hoff K. A., Juliussen O., Falk-Pedersen O., Svendsen H. F., 2004, Modeling and Experimental Study of Carbon Dioxide Absorption in Aqueous Alkanolamine Solutions Using a Membrane Contactor, *Ind. Eng. Chem. Res.*, *4*, 4908-4921
- 40. Horng S.Y., Li M.H., 2002, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine, Ind. Eng. Chem. 41, 257-266
- 41. Hsu C.H., Li M.H., 1997, Densities of aqueous blended amines, *Journal of Chemical Engineering Data*, 42, 502 -507.
- 42. Jamal A., Meisen A., Lim C.J., 2006, Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor-I.Experimental apparatus and mathematical modeling, *Chem. Eng. Sci.*, 61, 6571-6589.
- 43. Jiang, J.; Sandler, S. I., 2003, A new model for the viscosity of electrolyte solutions. Ind. Eng. Chem. Res., 42, 6267-6272
- 44. Jou F.-Y., Mather A.E., 2005, Solubility of carbon dioxide in an aqueous mixture of methyldiethanolamine and *N*-methylpyrrolidone at elevated pressures, *Fluid Phase Equilibria* 228–229, 465–469
- 45. Kim H.T., Jeon Y., Kim S., 2006, Simulation of CO₂ absorption with MEA solution, The 6th Korea-China Workshop on Clean Energy Technology, 4-7 july 2006, <u>http://cleanenergy.kier.re.kr</u>
- 46. Kohl A., Nielsen R., 1997, *Gas Purification*, 5th Edition, Gulf Publ. Comp., Houston, 16-289.
- 47. Kucka L., Richter J., Kenig E., Górak A., 2003, Determining of gas-liquid reaction kinetics with a stirred cell reactor, *Separation and Purification Technology*, 31, 2, 163-175.
- Kvamsdall H.M., Maurstad o., Jordal K., Bolland O.,2004, Benchmarking of gas turbine cycles with CO₂ capture, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies: Elsevier 2005. ISBN 0-080-44881-X, 233-241
- 49. Laddha S.S., Danckwerts P.V., 1981, Reaction of CO₂ with ethanolamines : kinetics from gas- absorption, *Chem.Eng.Sci.*, 36, 479- 482.
- 50. Laddha S.S., Danckwerts P.V., 1982, The absorption of CO₂ by amine- potash solutions, *Chem. Eng. Sci.*, 37, 665-667.
- 51. Leites L.I., 1986, *Ocistka gazov ot dioxide ugleroda*, Spravocinik azotcika, Himia, Moskva, 276-332.
- 52. Lemoine B., Li Y.-G., Cadours R., Bouallou C., Richon D., 2000, Partial vapor pressure of CO2 and H2S over *aqueous methyldiethanolamine solutions*, *Fluid* Phase Equilibria 172, 261–277
- 53. Lenka M. M., Anderko S., Sanders S.J., Young R.D., 1998: Intnl. J. Thermophys., 19, p.367-378
- 54. Li J.-L., Chen B.-H., 2005, Review of CO₂ absorption using chemical solvents in hollow fiber membrane contactors, *Separation and Purification Technology*, *41*, 109-122.

- 55. Li M.H., Lai M.D., 1995, Solubility and diffusivity of N₂O and CO₂ in MEA + MDEA + water and in MEA + 2-amino-2-methyl-diethanolamine, *Journal of Chemical Engineering Data*, 40, 486-492.
- 56. Liao C.H., Li M.-H., 2002, Kinetics of absorption of CO₂ in aqueous solutions of MEA+MDEA, *Chem. Eng. Sci.*, 57, 4569-4582.
- 57. Lin S.H., Shyu C.T., 1999, Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column, *Waste Management*, 19, 255-262.
- 58. Linek V.,Sinkule J.,Richter M.,Pospigil J., 1990, Verification of the design methods for industrial CO₂ TEA absorbers, *Ind.Eng.Chem. Res.*, 29, 1676-1681.
- 59. Littel R.J., Versteeg G.F., Van Swaaij W.P.M., 1992, Kinetics of CO₂ with primary and secondary amines in aqueous solutions- II. Influence of temperature on zwitterions formation and deprotonation rates, *Chem. Eng. Sci.*, *47*, 2037- 2045.
- 60. Lombardi L., 2003, Life cycle assessement comparison of technical solutions for CO₂ emissions reduction in power generation, *Energy Conversion and Management*, 44, 93-108.
- 61. Maceiras R., Alves S.S., Cancela M.A., Alvarez E., 2007, Effect of bubble contamination on gas- liquid mass transfer coefficient on CO₂ absorption in amine solutions, *Chemical Engineering Journal, in press.*
- 62. Ma'mun S., Svendsen H.S., Hoff K.A., Juliussen O., 2007, Selection of new absorbents for carbon dioxide capture, *Energy Conversion and Management*, 48, 251-258.
- 63. Mandal B.P., Biswas A.K., Bandyopadhyay S.S., 2003, Absorption of CO₂ into blends of 2amino-2- methyl-1-propanol (AMP) and DEA, *Chem. Eng. Sci.*, 58, 4137-4144.
- 64. Mandal B.P., Bandyopadhyay S.S., 2006, Absorption of carbon dioxide into aqueous blends of 2- amino- 2- methyl- 1- 1 propanol and monoethanolamine, *Chem. Eng. Sci.*, 61, 5440-5447.
- 65. Mariz C.I., 1998, Carbon dioxide recovery: large scale design trends, J. Can. Pet. Technol., 37, 42-47.
- Mathonat C., Majer V., Mather A.E., Grolier J.-P.E., 1997, Enthalpies of absorption and solubility of CO₂ in aqueous solutions of MDEA, *Fluid Phase Equilibria*, 140, 171-182.
- 67. McKee Barbara, 2002, Solutions for the 21th century. Zero emissions technologies for fossil fuels. *Technology status Report, IEA working Party on Fossils Fuels*, 1-47
- 68. Mimura T., 2003, Development and application of flue gas carbon dioxide recovery technology, 5th International Conference on Green house Gas Control Tech., Cairns, Australia, CSIRO publishers ISBN 0643066721
- 69. O'Callaghan W.P., 1993, Energy resources, CO₂ production and energy conservation, *Applied Energy*, 44, 65-91.
- 70. Oscarson J. L., Grimsrud H. K., Gillespie S.E., 2000, Heats of mixing of gaseous CO2/CH4 mixtures with aqueous solutions of methyldiethanolamine and diethanolamine, *Thermochimica Acta*, 351, 9-20
- 71. Pacheco M.A., Kaganoi S., Rochelle G.T., 2000, CO₂ absorption into aqueous mixtures of diglycolamine and methyldiethanolamine, *Chem. Eng. Sci.*, 55, 5125-5140.
- 72. Pani F., Bouallou C., Cadours R., Gaunand A., Richon D., 1996, Kinetics of absorption of carbon dioxide inaqueous solutions of N-methyldiethanolamine + monoethanolamine or + diethanolamine at 296 K or 343 K, *J. Phys.-Chem. Data*, *2*, 225-230
- 73. Pant A.K.K., Srivastava V.K., 2007, Carbon dioxide absorption into MEA in a continuous film contactor, *Chemical Engineering Journal*, 133, 229-237.
- 74. Pinsent B.R.W., Pearson L., Roughton F.W.J., 1956, The kinetics of combination of CO₂ with hydroxide ions, *Transactions of Faraday Society*, 52, 2930-2934.
- 75. Qin C.-F., Xu S.-J., Zhang G.-W., Zheng Z.-S., 2001, A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of MDEA and piperazine, *Ind. Eng. Chem. Res.*, 40, 3785-3791.
- Rao A.B., Rubin E.S., 2002, A technical, economic and environmental assessment of aminebased CO₂ capture technology for power plant greenhouse gas control, *Environ. Sci.Technol.*, 36, 4467- 4475.

- 77. Riemer P., Ormerod W.,1995, International perspectives and the results of carbon dioxide capture disposal and utilisation studies, *Energy Convers. Mgmt.*, *36*, *813 818*
- 78. Roberts D., Danckwerts P.V., 1962, Kinetics of CO₂ absorption in alkaline solutions-I. Transient absorption rates and catalysis by arsenite, *Chem. Eng. Scie.*, 17, 961-969.
- 79. Rochelle G.T., Dang H., 2003, CO₂ absorption rate and solubility in MEA/PZ water, *Separation Science and Technology*, *38*, *337-357*.
- 80. Saha A.K., Bandyopadhyay S.S., Biswas A.K., 1993, Solubility and diffusivity of N₂O and CO₂ in aqueous solution of AMP, *Journal of Chemical & Engineering Data*, 38, 78.
- 81. Santarelli M. G.L., 2004, Carbon exergy tax: a thermo-economic method to increase the efficient use of exergy resources, *Energy Policy 32, 413–427*
- 82. Schubert S., Grünewald M., Agar D.W., 2001, Enhancement of CO₂ absorption into aqueous MDEA using immobolised activators, *Chem. Eng. Sci.*, 56, 6211- 6216.
- Seo D.J., Hong W.H., 1999, Effect of piperazine on the reaction rate constant of CO₂ into aqueous MDEA, *Hwahak Konghak*, 37, 593-597.
- 84. Seo D.J., Hong W.H. 2000, Effect of piperazine on the kinetics of CO₂ with aqueous solutions of AMP, *Ind.Eng.Chem.Res.*, 39, 2062-2067.
- 85. Siminiceanu I., 1991, Carbon dioxide absorption into promoted potash solutions. Enhancement factor determining, *Studia Univ.Babes- Bolyai Cluj, Chem.*, 36,1-2, 71-
- 86. Siminiceanu I., Petrila C., Gherman C., 1996, Enhancement factor determining for acid gas absorption in chemical solvents, *Revista de Chimie*(*Bucharest*), 47, 265 -.
- 87. Siminiceanu I., Gherman C., Ivaniciuc M., 1995, Thermodinamic model for the CO₂ absorption into potash solutions, *Analele Univ. Craiova*, Chim, 2, 405-.
- 88. Siminiceanu I., 2004, Procese chimice gaz-lichid, Tehnopres, Iasi, 1-286.
- 89. Slack V.A., James G.R., 1974, Ammonia, Part II, Marcel Decker, New York, 115-347.
- 90. Someya S., Bando S., Chen B., Song Y., Nishio M., 2005, Measurement of CO2 solubility in pure water and the pressure effect on it in the presence of cloth rate hydrate, *International Journal of Heat and Mass Transfer* 48, 2503–2507
- 91. Song H.-J., Lee S., Jang S.-H., Gaur A., Park J.-W., 2007, Screening test of novel solvent for carbon dioxide absorption, AIChE 2007 Annual Meeting, Salt Lake City, Poster Session on Advances in Environmental Technology, http://aiche.confex.com/aiche/2007
- 92. Sotelo L.J., Benitez F.J., Beltran- Heredia J., Rodriguez C., 1990, Absorption of CO₂ into aqueous solutions of TEA , *A.I.Ch.E. Journal*, 36, 1263-1268.
- 93. Thitakamol B., Veawab A., Aroonwilas A., 2007, Environmental impacts of absorptionbased CO₂ capture unit for post- combustion treatment of flue gas from coal fired power plant, *International Journal of Greenhouse Gas Control*, 1, 318-342.
- 94. Tobiesen F.A., Svendsen H.F., Hoff K.A., 2005, Desorber energy consumption amine based absorption plants, *International Journal of Green Energy*, 2, 201-215.
- 95. Tomcej A.R., Otto D.F., 1989, Absorption of CO₂ and N₂O into aqueous solutions of MDEA, *A.I.Ch.E. Journal*, 35, p.861..
- 96. Tontiwachwuthikul P., 1996, Research and development activities on high efficiency separationprocess technologies for carbon dioxide removal from industrial sources at University of Regina, Canada, *Energy Conversion and Management*, *37*, *936-940*.
- 97. Tosh J.S., Field J.H., Benson H.E., Heynes W.P., 1959. *Equilibrium study of the system KHCO*₃-*K*₂*CO*₃- *CO*₂-*H*₂*O*, Report nr. 5484 of U.S. Buro of Mines,
- 98. Trambouze P., Van Landeghem H., Wauquier J.P., 2002, *Les réacteurs chimiques*, Edition Tecnip, Paris, 230-285
- 99. Tseng C.P., Ho S.W., Savage W.D., 1988, Carbon dioxide absorption into promoted carbonate solutions, *A.I.Ch.E. Journal*, 34, 922-931
- 100. Van Loo S., Van Elk E.P., Versteeg G.F., 2007, The removal of carbon dioxide with activated solutions of methyl- diethanol-amine, *Journal of Petrolium Science and Engineering*, 55, 135-145.
- 101. Veawab A., Aroonwilas A., 2002, Identification of oxidizing agents in aqueous amine- CO₂ systems using a mechanistic corrosion model, *Corrosion Science*, 44, 967- 987.

- 102. Versteeg G.F., van Swaaij W.P.M., 1988, On the kinetics between CO₂ and alkanolamines both in aqueous and non- aqueous solutions-II. Tertiary amines, Chem. Eng. Sci., 43, 587-591..
- 103. Weiland R.H., 2000, Comments on a study on equilibrium solubility for carbon dioxide in MDEA- PZ- H₂O solution, *Ind. Eng. Chem. Res.*, *39*, *3397.(despre Zhang, 1999)*
- 104. White C., Strazisar B., Granite E., Hoffman J.S., 2003, Separation and capture CO₂ from large stationary sources and sequestration in geological formations, Journal of the air& waste Management Association, 53, 645-715
- 105. Wilson M.A., Wrubleski R.M., Yarborough L., 1992, Recovery of CO₂ from power plant flue gases using amines, Energy ConvertsMgmt, vol. 33 (5-8), 325-331
- 106. Yagi T., Shibuya H., Sasaki T., 1992, Application of chemical absorption process to CO₂ recovery from flue gas generated in power plants, *Energy Conversion and Management*, 33, 349-355.
- 107. Yeh A.C., Bai H., 1999, Comparison of ammonia and MEA solvents to reduce carbon dioxide greenhouse gas emissions, 1999, *The Science of the Total nvironment, 228, 121-133.*
- 108. Yogish K., 1990, Absorption of CO₂ in some hybrid solvents, *The Canadian Journal of Chemical Engineering*, 68, 511-512.
- 109. Zhang H.Y., Wang R., Liang D.T., Tay J.H., 2006, Modeling and experimental study of CO₂ absorption in a hollow fiber membrane contactor, *Journal of Membrane Science*, 279, 301-310.
- 110. Zhang P., Shi Y., Wei J.W., 2007, Kinetics region and model for mass transfer in carbon dioxide absorption into aqueous solution of 2- amino- 2- methyl- 1- propanol, *Separation and purification Technology, in press.*
- 111. Mak H.Y., 1992, Gas plant converts amine unit to MDEA based solvent, Hydrocarbon Processing, 94, 92-96
- 112. Luebke D., 2010, Integrated Computational and Experimental Approaches to Ionic Liquid Development for Pre-combustion Solvents and , NETL CO2 Capture Technology Meeting
- 113. Perez-Salodo Alvaro, Dirk Tuma, Jianzhong Xia, and Gerd Maurer, 2003, Solubility of CO₂ in the Ionic Liquid [bmim] [PF₆], *J. Chem. Eng. Data*, 48, 746 749
- 114. Cadena C., Anthony Jennifer L., Shah Jindal K., Joan F. Brennecke, Maginn J.E., 2004, Why Is CO₂ so Soluble in Imidazolium-Based Ionic Liquids?, J. Am. Chem. Soc., 126, 5300 – 5308

Activitatea științifică în cadrul tezei de doctorat

A. Reviste cotate ISI

- Tataru- Farmus R.E., Siminiceanu I., Bouallou Ch., 2007, Carbon dioxide absorption into new formulated amine solutions (I), *Chemical Engineering Transactions*, 12, 175-181.
- Siminiceanu I., Tataru- Farmus R., Bouallou Ch., 2007, Kinetics of carbon dioxide absorption into aqueous solution of APEDA(I), *Environmental Engineering and Management Journal*, 6(5), 555-561.
- 3. Siminiceanu I., **Tataru- Farmus R**., Bouallou Ch., **2009**, Kinetics of carbon dioxide absorption into aqueous solution of APEDA (II), *Rev. Chim.* 60 (2), 113-118.

B. Reviste

- Siminiceanu I., Tataru- Farmus R.E., J.-M. Amann, 2006, Kinetics of carbon dioxide absorption into aqueous solutions of etilenediamine, Buletinul Inst. Polit. Iasi, Tome 52(56), 1-2, Chim si Ing.Chim., 45- 50.
- Tataru- Farmus R., Siminiceanu I., Bouallou Ch., 2006, Density of three amine aqueous solution: measuring and correlation, *Annals of the Suceava University*, V(2), 16- 20.
- Siminiceanu I., Tataru- Farmus R., Bouallou Ch., 2008, Kinetics of carbon dioxide absorption into aqueous solution of a polyamine, *Bul. St.Univ. "Politehnica " Timisoara, s. Chim.Ing. Chim.*, 53(67), Fasc.1-2, 1-4.

C. Volume

- Siminiceanu I., Tataru –Farmus Ramona, Butnaru M., 2004, Reducerea emissilor de Nox la fabricarea acidului azotic diluat prin intensificarea absorbtiei, Volumul a XXVIII-a Conferinta Nationala de Chimie, 6-8 Octombrie, Calimanesti-Caciulata, p.201.
- 8. Siminiceanu I., **Tataru- Farmus R.**E., Bouallou Ch., **2005**, *Kinetics of carbon dioxide absorption into aqueous solutions of EDA and TETA*, Proc. XIVth Romanian International Conference on Chemistry and Chemical Engineering (RICCCE

XIV), Bucharest, September 22-24, vol 3, p.S05-201- S05-218. ISBN 973-718-287-1.

- Tataru- Farmus R., Bouallou C., Siminiceanu I., 2006, Absorbtion du CO2 dans des solutions aqueouses d'ethylenediamine, CoFrRoCA 2006, Clairmont Ferrant, p. 269-270.
- Tataru- Farmus R.E., Siminiceanu I., Bouallous Ch., Diaconescu R., Secula M.S., 2007 Viscosity of three amine aqueous solutions: measuring and correlatation, Proceedings of the 1st Applied Sciences Symp.(ASS-2007), April13- 15, Alma Mater, ISSN 1843-1003, p. 238- 244.
- Tataru- Farmus R.E., <u>Siminiceanu I.,</u> Bouallou Ch., 2007, Carbon dioxide absorption into new formulated amine solutions (I).Soluion viscosity measuring and correlation, 10th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, PRES'07, *Iaschia, Italy*, June 24-27, Volume 1 (Edited by Jiri Jlemes), AIDIC Servizi S.r.l, ISBN 88-901915-4 6.
- Tataru- Farmus R., Siminiceanu I., 2008 Determinarea constantelor cinetice la absorbtia dioxidului de carbon in solutii apoase de amine, Ibid., *International Conference of Applied Sciences- Chemistry and Engineering Chemistry, CISA 2008*, Edit. Alma Mater, Slanic Moldova April 4- 6, ISBN 978- 973- 1833- 86- 6, p. 271-272.
- 13. Siminiceanu I., Irimia O. Tataru- Farmus R., 2009, Carbon Dioxide Absorption into New Solvents, Proceedings of the 5th International Conference EEM *Sustainable production and consumption*, September 15- 19, Tulcea (ISBN 978-973-7645-66-1), p 97.
- Siminiceanu I., Tataru- Farmus R., (2010), Enthalpy of Carbon Dioxide Absorption into new Ionic Liquids, *International Conference of Applied Sciences- Chemistry and Engineering Chemistry, CISA 2010*, Slanic Moldova April 8- 11, Edit. Alma Mater, ISSN 2066-7817, p.87-92.
- Siminiceanu I., Tataru- Farmus R., 2010, Carbon Dioxide Absorption into Ionic Liquids, International Conference of Applied Sciences- Chemistry and Engineering Chemistry, CISA 2010, Slanic Moldova, April 8- 11, Edit. Alma Mater, ISSN 2066-7817, p.277-280.
- Siminiceanu I., Tataru- Farmus R., (2010), Le captage du dioxyde de carbon par des liquides ioniques: l'enthalpie d'absorption, Actes du sixieme CoFrRoCA 2010, 7- 10 Juillet 2010, p. 137, Orleans, France, ISSN 2068- 6382.